非线性二阶初值问题高阶 Galerkin 近似的后处理技术及其在波方程中的应用

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Mingzhu Zhang, Lijun Yi
{"title":"非线性二阶初值问题高阶 Galerkin 近似的后处理技术及其在波方程中的应用","authors":"Mingzhu Zhang, Lijun Yi","doi":"10.4208/cicp.oa-2023-0232","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to propose and analyze two postprocessing techniques for improving the accuracy of the $C^1$- and $C^0$-continuous Galerkin (CG) time\nstepping methods for nonlinear second-order initial value problems, respectively. We\nfirst derive several optimal a priori error estimates and nodal superconvergent estimates for the $C^1$- and $C^0$-$CG$ methods. Then we propose two simple but efficient local\npostprocessing techniques for the $C^1$- and $C^0$-$CG$ methods, respectively. The key idea\nof the postprocessing techniques is to add a certain higher order generalized Jacobi\npolynomial of degree $k+1$ to the $C^1$- or $C^0$-$CG$ approximation of degree $k$ on each local\ntime step. We prove that, for problems with regular solutions, such postprocessing\ntechniques improve the global convergence rates for the $L^2$-, $H^1$- and $L^∞$-error estimates of the $C^1$- and $C^0$-$CG$ methods with quasi-uniform meshes by one order. As\napplications, we apply the superconvergent postprocessing techniques to the $C^1$- and $C^0$-$CG$ time discretization of nonlinear wave equations. Several numerical examples\nare presented to verify the theoretical results.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"31 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Postprocessing Techniques of High-Order Galerkin Approximations to Nonlinear Second-Order Initial Value Problems with Applications to Wave Equations\",\"authors\":\"Mingzhu Zhang, Lijun Yi\",\"doi\":\"10.4208/cicp.oa-2023-0232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to propose and analyze two postprocessing techniques for improving the accuracy of the $C^1$- and $C^0$-continuous Galerkin (CG) time\\nstepping methods for nonlinear second-order initial value problems, respectively. We\\nfirst derive several optimal a priori error estimates and nodal superconvergent estimates for the $C^1$- and $C^0$-$CG$ methods. Then we propose two simple but efficient local\\npostprocessing techniques for the $C^1$- and $C^0$-$CG$ methods, respectively. The key idea\\nof the postprocessing techniques is to add a certain higher order generalized Jacobi\\npolynomial of degree $k+1$ to the $C^1$- or $C^0$-$CG$ approximation of degree $k$ on each local\\ntime step. We prove that, for problems with regular solutions, such postprocessing\\ntechniques improve the global convergence rates for the $L^2$-, $H^1$- and $L^∞$-error estimates of the $C^1$- and $C^0$-$CG$ methods with quasi-uniform meshes by one order. As\\napplications, we apply the superconvergent postprocessing techniques to the $C^1$- and $C^0$-$CG$ time discretization of nonlinear wave equations. Several numerical examples\\nare presented to verify the theoretical results.\",\"PeriodicalId\":50661,\"journal\":{\"name\":\"Communications in Computational Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4208/cicp.oa-2023-0232\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0232","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提出并分析两种后处理技术,分别用于提高非线性二阶初值问题的$C^1$-和$C^0$-连续伽勒金(CG)时间裁剪方法的精度。我们首先为 $C^1$- 和 $C^0$-$CG$ 方法推导了几个最优的先验误差估计和节点超收敛估计。然后,我们分别为 $C^1$- 和 $C^0$-$CG$ 方法提出了两种简单而高效的局部后处理技术。后处理技术的主要思想是,在每个局部时间步上,在度数为 $k$ 的 $C^1$- 或 $C^0$-$CG$ 近似上,添加某个度数为 $k+1$ 的高阶广义雅各比波二项式。我们证明,对于有规则解的问题,这种后处理技术可以将准均匀网格的$C^1$-和$C^0$-$CG$方法的$L^2$-、$H^1$-和$L^∞$-误差估计的全局收敛率提高一个阶。在应用方面,我们将超融合后处理技术应用于非线性波方程的 $C^1$- 和 $C^0$-$CG$ 时间离散化。我们举了几个数值例子来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Postprocessing Techniques of High-Order Galerkin Approximations to Nonlinear Second-Order Initial Value Problems with Applications to Wave Equations
The aim of this paper is to propose and analyze two postprocessing techniques for improving the accuracy of the $C^1$- and $C^0$-continuous Galerkin (CG) time stepping methods for nonlinear second-order initial value problems, respectively. We first derive several optimal a priori error estimates and nodal superconvergent estimates for the $C^1$- and $C^0$-$CG$ methods. Then we propose two simple but efficient local postprocessing techniques for the $C^1$- and $C^0$-$CG$ methods, respectively. The key idea of the postprocessing techniques is to add a certain higher order generalized Jacobi polynomial of degree $k+1$ to the $C^1$- or $C^0$-$CG$ approximation of degree $k$ on each local time step. We prove that, for problems with regular solutions, such postprocessing techniques improve the global convergence rates for the $L^2$-, $H^1$- and $L^∞$-error estimates of the $C^1$- and $C^0$-$CG$ methods with quasi-uniform meshes by one order. As applications, we apply the superconvergent postprocessing techniques to the $C^1$- and $C^0$-$CG$ time discretization of nonlinear wave equations. Several numerical examples are presented to verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信