恒定成本随机通信没有完整问题

Yuting Fang, Lianna Hambardzumyan, Nathaniel Harms, Pooya Hatami
{"title":"恒定成本随机通信没有完整问题","authors":"Yuting Fang, Lianna Hambardzumyan, Nathaniel Harms, Pooya Hatami","doi":"arxiv-2404.00812","DOIUrl":null,"url":null,"abstract":"We prove that the class of communication problems with public-coin randomized\nconstant-cost protocols, called $BPP^0$, does not contain a complete problem.\nIn other words, there is no randomized constant-cost problem $Q \\in BPP^0$,\nsuch that all other problems $P \\in BPP^0$ can be computed by a constant-cost\ndeterministic protocol with access to an oracle for $Q$. We also show that the\n$k$-Hamming Distance problems form an infinite hierarchy within $BPP^0$.\nPreviously, it was known only that Equality is not complete for $BPP^0$. We\nintroduce a new technique, using Ramsey theory, that can prove lower bounds\nagainst arbitrary oracles in $BPP^0$, and more generally, we show that\n$k$-Hamming Distance matrices cannot be expressed as a Boolean combination of\nany constant number of matrices which forbid large Greater-Than subproblems.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"158 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No Complete Problem for Constant-Cost Randomized Communication\",\"authors\":\"Yuting Fang, Lianna Hambardzumyan, Nathaniel Harms, Pooya Hatami\",\"doi\":\"arxiv-2404.00812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the class of communication problems with public-coin randomized\\nconstant-cost protocols, called $BPP^0$, does not contain a complete problem.\\nIn other words, there is no randomized constant-cost problem $Q \\\\in BPP^0$,\\nsuch that all other problems $P \\\\in BPP^0$ can be computed by a constant-cost\\ndeterministic protocol with access to an oracle for $Q$. We also show that the\\n$k$-Hamming Distance problems form an infinite hierarchy within $BPP^0$.\\nPreviously, it was known only that Equality is not complete for $BPP^0$. We\\nintroduce a new technique, using Ramsey theory, that can prove lower bounds\\nagainst arbitrary oracles in $BPP^0$, and more generally, we show that\\n$k$-Hamming Distance matrices cannot be expressed as a Boolean combination of\\nany constant number of matrices which forbid large Greater-Than subproblems.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.00812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

换句话说,在 BPP^0$ 中不存在随机恒定成本问题 $Q \,以至于 BPP^0$ 中的所有其他问题 $P \ 都可以通过一个恒定成本的确定性协议来计算,并且可以获得一个关于 $Q$ 的神谕。我们还证明了 $k$-Hamming Distance 问题在 $BPP^0$ 中形成了一个无限的层次结构。我们引入了一种使用拉姆齐理论的新技术,它可以证明 $BPP^0$ 中任意奥拉夫的下限,而且更广泛地说,我们证明了 $k$-Hamming Distance 矩阵不能表示为任何常量矩阵的布尔组合,这就禁止了大型的 Greater-Than 子问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No Complete Problem for Constant-Cost Randomized Communication
We prove that the class of communication problems with public-coin randomized constant-cost protocols, called $BPP^0$, does not contain a complete problem. In other words, there is no randomized constant-cost problem $Q \in BPP^0$, such that all other problems $P \in BPP^0$ can be computed by a constant-cost deterministic protocol with access to an oracle for $Q$. We also show that the $k$-Hamming Distance problems form an infinite hierarchy within $BPP^0$. Previously, it was known only that Equality is not complete for $BPP^0$. We introduce a new technique, using Ramsey theory, that can prove lower bounds against arbitrary oracles in $BPP^0$, and more generally, we show that $k$-Hamming Distance matrices cannot be expressed as a Boolean combination of any constant number of matrices which forbid large Greater-Than subproblems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信