具有离散追索权的可恢复稳健最短路径问题的计算复杂性

Marcel Jackiewicz, Adam Kasperski, Paweł Zieliński
{"title":"具有离散追索权的可恢复稳健最短路径问题的计算复杂性","authors":"Marcel Jackiewicz, Adam Kasperski, Paweł Zieliński","doi":"arxiv-2403.20000","DOIUrl":null,"url":null,"abstract":"In this paper the recoverable robust shortest path problem is investigated.\nDiscrete budgeted interval uncertainty representation is used to model\nuncertain second-stage arc costs. The known complexity results for this problem\nare strengthened. It is shown that it is Sigma_3^p-hard for the arc exclusion\nand the arc symmetric difference neighborhoods. Furthermore, it is also proven\nthat the inner adversarial problem for these neighborhoods is Pi_2^p-hard.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Complexity of the Recoverable Robust Shortest Path Problem with Discrete Recourse\",\"authors\":\"Marcel Jackiewicz, Adam Kasperski, Paweł Zieliński\",\"doi\":\"arxiv-2403.20000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the recoverable robust shortest path problem is investigated.\\nDiscrete budgeted interval uncertainty representation is used to model\\nuncertain second-stage arc costs. The known complexity results for this problem\\nare strengthened. It is shown that it is Sigma_3^p-hard for the arc exclusion\\nand the arc symmetric difference neighborhoods. Furthermore, it is also proven\\nthat the inner adversarial problem for these neighborhoods is Pi_2^p-hard.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.20000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.20000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了可恢复鲁棒最短路径问题,并使用离散预算区间不确定性表示法对不确定的第二阶段弧成本进行建模。该问题的已知复杂度结果得到了加强。结果表明,对于弧排除和弧对称差邻域,该问题的复杂度为 Sigma_3^p-hard。此外,还证明了这些邻域的内部对抗问题是 Pi_2^p 难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Complexity of the Recoverable Robust Shortest Path Problem with Discrete Recourse
In this paper the recoverable robust shortest path problem is investigated. Discrete budgeted interval uncertainty representation is used to model uncertain second-stage arc costs. The known complexity results for this problem are strengthened. It is shown that it is Sigma_3^p-hard for the arc exclusion and the arc symmetric difference neighborhoods. Furthermore, it is also proven that the inner adversarial problem for these neighborhoods is Pi_2^p-hard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信