平方紧凑性和林德洛夫树

IF 0.3 4区 数学 Q1 Arts and Humanities
Pedro E. Marun
{"title":"平方紧凑性和林德洛夫树","authors":"Pedro E. Marun","doi":"10.1007/s00153-024-00918-5","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that every weakly square compact cardinal is a strong limit cardinal, and therefore weakly compact. We also study Aronszajn trees with no uncountable finitely splitting subtrees, characterizing them in terms of being Lindelöf with respect to a particular topology. We prove that the class of such trees is consistently non-empty and lies between the classes of Suslin and Aronszajn trees.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-024-00918-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Square compactness and Lindelöf trees\",\"authors\":\"Pedro E. Marun\",\"doi\":\"10.1007/s00153-024-00918-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that every weakly square compact cardinal is a strong limit cardinal, and therefore weakly compact. We also study Aronszajn trees with no uncountable finitely splitting subtrees, characterizing them in terms of being Lindelöf with respect to a particular topology. We prove that the class of such trees is consistently non-empty and lies between the classes of Suslin and Aronszajn trees.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-024-00918-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-024-00918-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00918-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了每一个弱平方紧凑心形都是强极限心形,因此也是弱紧凑心形。我们还研究了没有不可数有限分裂子树的阿伦扎金树,并根据林德洛夫与特定拓扑学的关系来描述它们。我们证明,这类树始终是非空的,介于苏斯林树和阿伦扎任树之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Square compactness and Lindelöf trees

We prove that every weakly square compact cardinal is a strong limit cardinal, and therefore weakly compact. We also study Aronszajn trees with no uncountable finitely splitting subtrees, characterizing them in terms of being Lindelöf with respect to a particular topology. We prove that the class of such trees is consistently non-empty and lies between the classes of Suslin and Aronszajn trees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信