用多项式差异内函数提升

Yahel Manor, Or Meir
{"title":"用多项式差异内函数提升","authors":"Yahel Manor, Or Meir","doi":"arxiv-2404.07606","DOIUrl":null,"url":null,"abstract":"Lifting theorems are theorems that bound the communication complexity of a\ncomposed function $f\\circ g^{n}$ in terms of the query complexity of $f$ and\nthe communication complexity of $g$. Such theorems constitute a powerful\ngeneralization of direct-sum theorems for $g$, and have seen numerous\napplications in recent years. We prove a new lifting theorem that works for\nevery two functions $f,g$ such that the discrepancy of $g$ is at most inverse\npolynomial in the input length of $f$. Our result is a significant\ngeneralization of the known direct-sum theorem for discrepancy, and extends the\nrange of inner functions $g$ for which lifting theorems hold.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifting with Inner Functions of Polynomial Discrepancy\",\"authors\":\"Yahel Manor, Or Meir\",\"doi\":\"arxiv-2404.07606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lifting theorems are theorems that bound the communication complexity of a\\ncomposed function $f\\\\circ g^{n}$ in terms of the query complexity of $f$ and\\nthe communication complexity of $g$. Such theorems constitute a powerful\\ngeneralization of direct-sum theorems for $g$, and have seen numerous\\napplications in recent years. We prove a new lifting theorem that works for\\nevery two functions $f,g$ such that the discrepancy of $g$ is at most inverse\\npolynomial in the input length of $f$. Our result is a significant\\ngeneralization of the known direct-sum theorem for discrepancy, and extends the\\nrange of inner functions $g$ for which lifting theorems hold.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.07606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.07606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提升定理是指用 $f$ 的查询复杂度和 $g$ 的通信复杂度来约束组合函数 $f\circ g^{n}$ 的通信复杂度的定理。此类定理构成了直接求和定理对 $g$ 的有力概括,近年来得到了大量应用。我们证明了一个新的提升定理,它适用于两个函数 $f,g$,使得 $g$ 的差异至多是 $f$ 输入长度的反五次方。我们的结果是对已知直接相加差异定理的重要概括,并扩展了提升定理成立的内函数 $g$ 的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifting with Inner Functions of Polynomial Discrepancy
Lifting theorems are theorems that bound the communication complexity of a composed function $f\circ g^{n}$ in terms of the query complexity of $f$ and the communication complexity of $g$. Such theorems constitute a powerful generalization of direct-sum theorems for $g$, and have seen numerous applications in recent years. We prove a new lifting theorem that works for every two functions $f,g$ such that the discrepancy of $g$ is at most inverse polynomial in the input length of $f$. Our result is a significant generalization of the known direct-sum theorem for discrepancy, and extends the range of inner functions $g$ for which lifting theorems hold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信