具有奇异算子和临界或超临界增长的准线性薛定谔方程

IF 1 3区 数学 Q1 MATHEMATICS
Lin Guo, Chen Huang
{"title":"具有奇异算子和临界或超临界增长的准线性薛定谔方程","authors":"Lin Guo, Chen Huang","doi":"10.1007/s40840-024-01691-7","DOIUrl":null,"url":null,"abstract":"<p>We consider the following singular quasilinear Schrödinger equations involving critical exponent </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} \\displaystyle -\\Delta u-\\frac{\\alpha }{2}\\Delta (|u|^{\\alpha })|u|^{\\alpha -2}u=\\theta |u|^{k-2}u+|u|^{2^{*}-2}u+\\lambda f(u), x\\in \\Omega ,\\\\ \\hspace{1.65in}u=\\,0, x\\in \\partial \\Omega , \\end{array} \\right. \\end{aligned}$$</span><p>where <span>\\(0&lt;\\alpha &lt;1\\)</span>. By using the variational methods, we first prove that for small values of <span>\\(\\lambda \\)</span> and <span>\\(\\theta \\)</span>, the above problem has infinitely many distinct solutions with negative energy. Besides, we point out that odd assumption on <i>f</i> is required; the problem has at least one nontrivial solution. Finally, a new modified technique is used to consider the existence of infinitely many solutions for far more general equations.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"53 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasilinear Schrödinger Equations with a Singular Operator and Critical or Supercritical Growth\",\"authors\":\"Lin Guo, Chen Huang\",\"doi\":\"10.1007/s40840-024-01691-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the following singular quasilinear Schrödinger equations involving critical exponent </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} \\\\displaystyle -\\\\Delta u-\\\\frac{\\\\alpha }{2}\\\\Delta (|u|^{\\\\alpha })|u|^{\\\\alpha -2}u=\\\\theta |u|^{k-2}u+|u|^{2^{*}-2}u+\\\\lambda f(u), x\\\\in \\\\Omega ,\\\\\\\\ \\\\hspace{1.65in}u=\\\\,0, x\\\\in \\\\partial \\\\Omega , \\\\end{array} \\\\right. \\\\end{aligned}$$</span><p>where <span>\\\\(0&lt;\\\\alpha &lt;1\\\\)</span>. By using the variational methods, we first prove that for small values of <span>\\\\(\\\\lambda \\\\)</span> and <span>\\\\(\\\\theta \\\\)</span>, the above problem has infinitely many distinct solutions with negative energy. Besides, we point out that odd assumption on <i>f</i> is required; the problem has at least one nontrivial solution. Finally, a new modified technique is used to consider the existence of infinitely many solutions for far more general equations.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01691-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01691-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑以下涉及临界指数 $$\begin{aligned} 的奇异准线性薛定谔方程\(left) (begin) (array) (ll)\displaystyle -\Delta u-\frac\alpha }{2}\Delta (|u|^{\alpha })|u|^{\alpha -2}u=\theta |u|^{k-2}u+|u|^{2^{*}-2}u+\lambda f(u), x\in \Omega ,\\hspace{1.65in}u=\,0, x\in \partial \Omega , \end{array}.\right.\end{aligned}$where (0<\alpha <1\)。通过使用变分法,我们首先证明了对于 \(\lambda \)和 \(\theta \)的小值,上述问题有无穷多个不同的负能量解。此外,我们还指出对 f 的奇数假设是必需的;问题至少有一个非难解。最后,我们用一种新的修正技术来考虑更一般方程的无穷多个解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasilinear Schrödinger Equations with a Singular Operator and Critical or Supercritical Growth

We consider the following singular quasilinear Schrödinger equations involving critical exponent

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -\Delta u-\frac{\alpha }{2}\Delta (|u|^{\alpha })|u|^{\alpha -2}u=\theta |u|^{k-2}u+|u|^{2^{*}-2}u+\lambda f(u), x\in \Omega ,\\ \hspace{1.65in}u=\,0, x\in \partial \Omega , \end{array} \right. \end{aligned}$$

where \(0<\alpha <1\). By using the variational methods, we first prove that for small values of \(\lambda \) and \(\theta \), the above problem has infinitely many distinct solutions with negative energy. Besides, we point out that odd assumption on f is required; the problem has at least one nontrivial solution. Finally, a new modified technique is used to consider the existence of infinitely many solutions for far more general equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信