Carlos V. G. C. Lima, Thiago Marcilon, Pedro Paulo de Medeiros
{"title":"论某些周期凸性参数的复杂性","authors":"Carlos V. G. C. Lima, Thiago Marcilon, Pedro Paulo de Medeiros","doi":"arxiv-2404.09236","DOIUrl":null,"url":null,"abstract":"The subject of graph convexity is well explored in the literature, the\nso-called interval convexities above all. In this work, we explore the cycle\nconvexity, whose interval function is $I(S) = S \\cup \\{u \\mid G[S \\cup \\{u\\}]$\nhas a cycle containing $u\\}$. In this convexity, we prove that the decision\nproblems associated to the parameters rank and convexity number are in\n\\NP-complete and \\W[1]-hard when parameterized by the solution size. We also\nprove that to determine whether the percolation time of a graph is at least $k$\nis \\NP-complete, but polynomial for cacti or when $k\\leq2$","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the complexity of some cycle convexity parameters\",\"authors\":\"Carlos V. G. C. Lima, Thiago Marcilon, Pedro Paulo de Medeiros\",\"doi\":\"arxiv-2404.09236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject of graph convexity is well explored in the literature, the\\nso-called interval convexities above all. In this work, we explore the cycle\\nconvexity, whose interval function is $I(S) = S \\\\cup \\\\{u \\\\mid G[S \\\\cup \\\\{u\\\\}]$\\nhas a cycle containing $u\\\\}$. In this convexity, we prove that the decision\\nproblems associated to the parameters rank and convexity number are in\\n\\\\NP-complete and \\\\W[1]-hard when parameterized by the solution size. We also\\nprove that to determine whether the percolation time of a graph is at least $k$\\nis \\\\NP-complete, but polynomial for cacti or when $k\\\\leq2$\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.09236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.09236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
图凸性这一主题在文献中得到了很好的探讨,尤其是所谓的区间凸性。在这项工作中,我们探讨了循环凸性,其区间函数为 $I(S) = S \cup \{u \mid G[S \cup \{u\}]$has a cycle containing $u/}$。在这个凸性中,我们证明了与参数秩和凸性数相关的决策问题在以解的大小为参数时是in(NP-complete)和\W[1]-hard的。我们还证明,确定一个图的渗滤时间是否至少为 $k$ 是 \NP-complete 的,但对于仙人掌或当 $k\leq2$ 时是多项式的。
On the complexity of some cycle convexity parameters
The subject of graph convexity is well explored in the literature, the
so-called interval convexities above all. In this work, we explore the cycle
convexity, whose interval function is $I(S) = S \cup \{u \mid G[S \cup \{u\}]$
has a cycle containing $u\}$. In this convexity, we prove that the decision
problems associated to the parameters rank and convexity number are in
\NP-complete and \W[1]-hard when parameterized by the solution size. We also
prove that to determine whether the percolation time of a graph is at least $k$
is \NP-complete, but polynomial for cacti or when $k\leq2$