线性方程的解析:树状大小和空间的组合游戏

Svyatoslav Gryaznov, Sergei Ovcharov, Artur Riazanov
{"title":"线性方程的解析:树状大小和空间的组合游戏","authors":"Svyatoslav Gryaznov, Sergei Ovcharov, Artur Riazanov","doi":"arxiv-2404.08370","DOIUrl":null,"url":null,"abstract":"We consider the proof system Res($\\oplus$) introduced by Itsykson and Sokolov\n(Ann. Pure Appl. Log.'20), which is an extension of the resolution proof system\nand operates with disjunctions of linear equations over $\\mathbb{F}_2$. We study characterizations of tree-like size and space of Res($\\oplus$)\nrefutations using combinatorial games. Namely, we introduce a class of\nextensible formulas and prove tree-like size lower bounds on it using\nProver-Delayer games, as well as space lower bounds. This class is of\nparticular interest since it contains many classical combinatorial principles,\nincluding the pigeonhole, ordering, and dense linear ordering principles. Furthermore, we present the width-space relation for Res($\\oplus$)\ngeneralizing the results by Atserias and Dalmau (J. Comput. Syst. Sci.'08) and\ntheir variant of Spoiler-Duplicator games.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolution Over Linear Equations: Combinatorial Games for Tree-like Size and Space\",\"authors\":\"Svyatoslav Gryaznov, Sergei Ovcharov, Artur Riazanov\",\"doi\":\"arxiv-2404.08370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the proof system Res($\\\\oplus$) introduced by Itsykson and Sokolov\\n(Ann. Pure Appl. Log.'20), which is an extension of the resolution proof system\\nand operates with disjunctions of linear equations over $\\\\mathbb{F}_2$. We study characterizations of tree-like size and space of Res($\\\\oplus$)\\nrefutations using combinatorial games. Namely, we introduce a class of\\nextensible formulas and prove tree-like size lower bounds on it using\\nProver-Delayer games, as well as space lower bounds. This class is of\\nparticular interest since it contains many classical combinatorial principles,\\nincluding the pigeonhole, ordering, and dense linear ordering principles. Furthermore, we present the width-space relation for Res($\\\\oplus$)\\ngeneralizing the results by Atserias and Dalmau (J. Comput. Syst. Sci.'08) and\\ntheir variant of Spoiler-Duplicator games.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.08370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.08370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了由 Itsykson 和 Sokolov 引入的 Res($\oplus$) 证明系统(Ann. Pure Appl. Log.我们利用组合博弈来研究树状大小和 Res($\oplus$)refutations 空间的特征。也就是说,我们引入了一类可扩展公式,并用 "验证者-德赖尔 "博弈证明了它的树状大小下界以及空间下界。这一类公式特别有意思,因为它包含了许多经典的组合原理,包括鸽子洞原理、排序原理和密集线性排序原理。此外,我们提出了 Res($\oplus$) 的宽度-空间关系,概括了 Atserias 和 Dalmau (J. Comput. Syst. Sci.'08) 的结果及其 Spoiler-Duplicator 博弈的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolution Over Linear Equations: Combinatorial Games for Tree-like Size and Space
We consider the proof system Res($\oplus$) introduced by Itsykson and Sokolov (Ann. Pure Appl. Log.'20), which is an extension of the resolution proof system and operates with disjunctions of linear equations over $\mathbb{F}_2$. We study characterizations of tree-like size and space of Res($\oplus$) refutations using combinatorial games. Namely, we introduce a class of extensible formulas and prove tree-like size lower bounds on it using Prover-Delayer games, as well as space lower bounds. This class is of particular interest since it contains many classical combinatorial principles, including the pigeonhole, ordering, and dense linear ordering principles. Furthermore, we present the width-space relation for Res($\oplus$) generalizing the results by Atserias and Dalmau (J. Comput. Syst. Sci.'08) and their variant of Spoiler-Duplicator games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信