准中性附近弗拉索夫-麦克斯韦系统的隐含、渐近保全和能量电荷保全方法

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Chuwen Ma, Shi Jin
{"title":"准中性附近弗拉索夫-麦克斯韦系统的隐含、渐近保全和能量电荷保全方法","authors":"Chuwen Ma, Shi Jin","doi":"10.4208/cicp.oa-2023-0133","DOIUrl":null,"url":null,"abstract":"An implicit, asymptotic-preserving and energy-charge-conserving (APECC)\nParticle-In-Cell (PIC) method is proposed to solve the Vlasov-Maxwell (VM) equations in the quasi-neutral regime. Charge conservation is enforced by particle orbital\naveraging and fixed sub-time steps. The truncation error depending on the number of sub-time steps is further analyzed. The temporal discretization is chosen by\nthe Crank-Nicolson method to conserve the discrete energy exactly. The key step in\nthe asymptotic-preserving iteration for the nonlinear system is based on a decomposition of the current density deduced from the Vlasov equation in the source of the\nMaxwell model. Moreover, we show that the convergence is independent of the quasineutral parameter. Extensive numerical experiments show that the proposed method\ncan achieve asymptotic preservation and energy-charge conservation.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"93 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Implicit, Asymptotic-Preserving and Energy-Charge-Conserving Method for the Vlasov-Maxwell System Near Quasi-Neutrality\",\"authors\":\"Chuwen Ma, Shi Jin\",\"doi\":\"10.4208/cicp.oa-2023-0133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An implicit, asymptotic-preserving and energy-charge-conserving (APECC)\\nParticle-In-Cell (PIC) method is proposed to solve the Vlasov-Maxwell (VM) equations in the quasi-neutral regime. Charge conservation is enforced by particle orbital\\naveraging and fixed sub-time steps. The truncation error depending on the number of sub-time steps is further analyzed. The temporal discretization is chosen by\\nthe Crank-Nicolson method to conserve the discrete energy exactly. The key step in\\nthe asymptotic-preserving iteration for the nonlinear system is based on a decomposition of the current density deduced from the Vlasov equation in the source of the\\nMaxwell model. Moreover, we show that the convergence is independent of the quasineutral parameter. Extensive numerical experiments show that the proposed method\\ncan achieve asymptotic preservation and energy-charge conservation.\",\"PeriodicalId\":50661,\"journal\":{\"name\":\"Communications in Computational Physics\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4208/cicp.oa-2023-0133\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0133","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种隐式、渐近保留和能量电荷保留(APECC)粒子内胞(PIC)方法,用于求解准中性体系中的弗拉索夫-麦克斯韦(VM)方程。电荷守恒是通过粒子轨道平均化和固定子时间步长来实现的。进一步分析了取决于子时间步数的截断误差。采用 Crank-Nicolson 方法选择时间离散化,以精确保持离散能量。非线性系统渐近保全迭代的关键步骤是基于麦克斯韦模型源中 Vlasov 方程推导出的电流密度分解。此外,我们还证明了收敛性与准中性参数无关。广泛的数值实验表明,所提出的方法可以实现渐近保持和能量电荷守恒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Implicit, Asymptotic-Preserving and Energy-Charge-Conserving Method for the Vlasov-Maxwell System Near Quasi-Neutrality
An implicit, asymptotic-preserving and energy-charge-conserving (APECC) Particle-In-Cell (PIC) method is proposed to solve the Vlasov-Maxwell (VM) equations in the quasi-neutral regime. Charge conservation is enforced by particle orbital averaging and fixed sub-time steps. The truncation error depending on the number of sub-time steps is further analyzed. The temporal discretization is chosen by the Crank-Nicolson method to conserve the discrete energy exactly. The key step in the asymptotic-preserving iteration for the nonlinear system is based on a decomposition of the current density deduced from the Vlasov equation in the source of the Maxwell model. Moreover, we show that the convergence is independent of the quasineutral parameter. Extensive numerical experiments show that the proposed method can achieve asymptotic preservation and energy-charge conservation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信