渐近局部复杂双曲流形的渐近严格伪凸 CR 结构

IF 1 3区 数学 Q1 MATHEMATICS
Alan Pinoy
{"title":"渐近局部复杂双曲流形的渐近严格伪凸 CR 结构","authors":"Alan Pinoy","doi":"10.1007/s00209-024-03473-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we build a compactification by a strictly pseudoconvex CR structure for a complete and non-compact Kähler manifold whose curvature tensor is asymptotic to that of the complex hyperbolic space. To do so, we study in depth the evolution of various geometric objects that are defined on the leaves of some foliation of the complement of a suitable convex subset, called an <i>essential subset</i>, whose leaves are the equidistant hypersurfaces above this latter subset. With a suitable renormalization which is closely related to the anisotropic nature of the ambient geometry, the above mentioned geometric objects converge near infinity, inducing the claimed structure on the boundary at infinity.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic strictly pseudoconvex CR structure for asymptotically locally complex hyperbolic manifolds\",\"authors\":\"Alan Pinoy\",\"doi\":\"10.1007/s00209-024-03473-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we build a compactification by a strictly pseudoconvex CR structure for a complete and non-compact Kähler manifold whose curvature tensor is asymptotic to that of the complex hyperbolic space. To do so, we study in depth the evolution of various geometric objects that are defined on the leaves of some foliation of the complement of a suitable convex subset, called an <i>essential subset</i>, whose leaves are the equidistant hypersurfaces above this latter subset. With a suitable renormalization which is closely related to the anisotropic nature of the ambient geometry, the above mentioned geometric objects converge near infinity, inducing the claimed structure on the boundary at infinity.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03473-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03473-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过严格伪凸 CR 结构为一个完整且非紧凑的凯勒流形建立了紧凑性,该流形的曲率张量渐近于复双曲空间的曲率张量。为此,我们深入研究了各种几何对象的演化过程,这些对象定义在一个合适的凸子集(称为基本子集)的补集的叶片上,而基本子集的叶片是后一个子集上方的等距超曲面。通过与环境几何的各向异性密切相关的适当重正化,上述几何对象在无穷大附近收敛,从而在无穷大处的边界上产生所声称的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic strictly pseudoconvex CR structure for asymptotically locally complex hyperbolic manifolds

In this paper, we build a compactification by a strictly pseudoconvex CR structure for a complete and non-compact Kähler manifold whose curvature tensor is asymptotic to that of the complex hyperbolic space. To do so, we study in depth the evolution of various geometric objects that are defined on the leaves of some foliation of the complement of a suitable convex subset, called an essential subset, whose leaves are the equidistant hypersurfaces above this latter subset. With a suitable renormalization which is closely related to the anisotropic nature of the ambient geometry, the above mentioned geometric objects converge near infinity, inducing the claimed structure on the boundary at infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信