{"title":"渐近局部复杂双曲流形的渐近严格伪凸 CR 结构","authors":"Alan Pinoy","doi":"10.1007/s00209-024-03473-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we build a compactification by a strictly pseudoconvex CR structure for a complete and non-compact Kähler manifold whose curvature tensor is asymptotic to that of the complex hyperbolic space. To do so, we study in depth the evolution of various geometric objects that are defined on the leaves of some foliation of the complement of a suitable convex subset, called an <i>essential subset</i>, whose leaves are the equidistant hypersurfaces above this latter subset. With a suitable renormalization which is closely related to the anisotropic nature of the ambient geometry, the above mentioned geometric objects converge near infinity, inducing the claimed structure on the boundary at infinity.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic strictly pseudoconvex CR structure for asymptotically locally complex hyperbolic manifolds\",\"authors\":\"Alan Pinoy\",\"doi\":\"10.1007/s00209-024-03473-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we build a compactification by a strictly pseudoconvex CR structure for a complete and non-compact Kähler manifold whose curvature tensor is asymptotic to that of the complex hyperbolic space. To do so, we study in depth the evolution of various geometric objects that are defined on the leaves of some foliation of the complement of a suitable convex subset, called an <i>essential subset</i>, whose leaves are the equidistant hypersurfaces above this latter subset. With a suitable renormalization which is closely related to the anisotropic nature of the ambient geometry, the above mentioned geometric objects converge near infinity, inducing the claimed structure on the boundary at infinity.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03473-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03473-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we build a compactification by a strictly pseudoconvex CR structure for a complete and non-compact Kähler manifold whose curvature tensor is asymptotic to that of the complex hyperbolic space. To do so, we study in depth the evolution of various geometric objects that are defined on the leaves of some foliation of the complement of a suitable convex subset, called an essential subset, whose leaves are the equidistant hypersurfaces above this latter subset. With a suitable renormalization which is closely related to the anisotropic nature of the ambient geometry, the above mentioned geometric objects converge near infinity, inducing the claimed structure on the boundary at infinity.