{"title":"通过反射的局部自由卡尔德罗-夏波顿函数","authors":"Lang Mou","doi":"10.1007/s00209-024-03483-y","DOIUrl":null,"url":null,"abstract":"<p>We study the reflections of locally free Caldero–Chapoton functions associated to representations of Geiß–Leclerc–Schröer’s quivers with relations for symmetrizable Cartan matrices. We prove that for rank 2 cluster algebras, non-initial cluster variables are expressed as locally free Caldero–Chapoton functions of locally free indecomposable rigid representations. Our method gives rise to a new proof of the locally free Caldero–Chapoton formulas obtained by Geiß–Leclerc–Schröer in Dynkin cases. For general acyclic skew-symmetrizable cluster algebras, we prove the formula for any non-initial cluster variable obtained by almost sink and source mutations.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally free Caldero–Chapoton functions via reflections\",\"authors\":\"Lang Mou\",\"doi\":\"10.1007/s00209-024-03483-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the reflections of locally free Caldero–Chapoton functions associated to representations of Geiß–Leclerc–Schröer’s quivers with relations for symmetrizable Cartan matrices. We prove that for rank 2 cluster algebras, non-initial cluster variables are expressed as locally free Caldero–Chapoton functions of locally free indecomposable rigid representations. Our method gives rise to a new proof of the locally free Caldero–Chapoton formulas obtained by Geiß–Leclerc–Schröer in Dynkin cases. For general acyclic skew-symmetrizable cluster algebras, we prove the formula for any non-initial cluster variable obtained by almost sink and source mutations.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03483-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03483-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Locally free Caldero–Chapoton functions via reflections
We study the reflections of locally free Caldero–Chapoton functions associated to representations of Geiß–Leclerc–Schröer’s quivers with relations for symmetrizable Cartan matrices. We prove that for rank 2 cluster algebras, non-initial cluster variables are expressed as locally free Caldero–Chapoton functions of locally free indecomposable rigid representations. Our method gives rise to a new proof of the locally free Caldero–Chapoton formulas obtained by Geiß–Leclerc–Schröer in Dynkin cases. For general acyclic skew-symmetrizable cluster algebras, we prove the formula for any non-initial cluster variable obtained by almost sink and source mutations.