涉及周期函数的非线性微分-差分方程的单态解

IF 1 3区 数学 Q1 MATHEMATICS
Shuang-Shuang Yang, Xian-Jing Dong, Liang-Wen Liao
{"title":"涉及周期函数的非线性微分-差分方程的单态解","authors":"Shuang-Shuang Yang, Xian-Jing Dong, Liang-Wen Liao","doi":"10.1007/s40840-024-01681-9","DOIUrl":null,"url":null,"abstract":"<p>We investigate the following two types of nonlinear differential-difference equations </p><span>$$ L(z,f)+H(z,f)=\\sum _{k=1}^r\\alpha _k(z)e^{\\beta _k z}; \\ \\ \\ \\ $$</span><span>$$L(z,f)+H(z,f)=\\sum _{k=1}^rF_k(z), \\ \\ \\ \\ \\ \\ \\ \\ \\ $$</span><p>where <span>\\(\\alpha _1, \\ldots , \\alpha _r\\)</span> are meromorphic functions of order <span>\\(&lt;1,\\)</span> and <span>\\(F_1,\\ldots , F_r\\)</span> are periodic transcendental entire functions, and <i>L</i>, <i>H</i> are defined by <span>\\(L(z,f)=\\sum _{k=1}^pa_k(z)f^{(m_k)}(z+\\tau _k)\\not \\equiv 0,\\)</span> <span>\\(H(z,f)=\\sum _{k=1}^qb_k(z)\\big [f^{(n_k)}(z+\\zeta _k)\\big ]^{s_k} \\ \\ \\)</span> with small meromorphic coefficients <span>\\(a_i, b_j.\\)</span> By introducing a new method, we obtain the exact forms of the solutions of these two equations under certain growth conditions.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"286 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meromorphic Solutions of Nonlinear Differential-Difference Equations Involving Periodic Functions\",\"authors\":\"Shuang-Shuang Yang, Xian-Jing Dong, Liang-Wen Liao\",\"doi\":\"10.1007/s40840-024-01681-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the following two types of nonlinear differential-difference equations </p><span>$$ L(z,f)+H(z,f)=\\\\sum _{k=1}^r\\\\alpha _k(z)e^{\\\\beta _k z}; \\\\ \\\\ \\\\ \\\\ $$</span><span>$$L(z,f)+H(z,f)=\\\\sum _{k=1}^rF_k(z), \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ $$</span><p>where <span>\\\\(\\\\alpha _1, \\\\ldots , \\\\alpha _r\\\\)</span> are meromorphic functions of order <span>\\\\(&lt;1,\\\\)</span> and <span>\\\\(F_1,\\\\ldots , F_r\\\\)</span> are periodic transcendental entire functions, and <i>L</i>, <i>H</i> are defined by <span>\\\\(L(z,f)=\\\\sum _{k=1}^pa_k(z)f^{(m_k)}(z+\\\\tau _k)\\\\not \\\\equiv 0,\\\\)</span> <span>\\\\(H(z,f)=\\\\sum _{k=1}^qb_k(z)\\\\big [f^{(n_k)}(z+\\\\zeta _k)\\\\big ]^{s_k} \\\\ \\\\ \\\\)</span> with small meromorphic coefficients <span>\\\\(a_i, b_j.\\\\)</span> By introducing a new method, we obtain the exact forms of the solutions of these two equations under certain growth conditions.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"286 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01681-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01681-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以下两类非线性微分差分方程 $$ L(z,f)+H(z,f)=sum _{k=1}^r\alpha _k(z)e^{beta _k z};\ $$$$L(z,f)+H(z,f)=sum _{k=1}^rF_k(z), \\\$where \(\α _1, \ldots , \α _r\) are meromorphic functions of order\(<;1,)和 (F_1,\ldots,F_r\ )是周期性的超越整函数,并且 L, H 的定义是 (L(z,f)=\sum _{k=1}^pa_k(z)f^{(m_k)}(z+\tau _k)(不是 0,)\(H(z,f)=sum _{k=1}^qb_k(z)\big [f^{(n_k)}(z+\zeta _k)\big]^{s_k})。\ 通过引入一种新方法,我们得到了这两个方程在某些增长条件下的解的精确形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meromorphic Solutions of Nonlinear Differential-Difference Equations Involving Periodic Functions

We investigate the following two types of nonlinear differential-difference equations

$$ L(z,f)+H(z,f)=\sum _{k=1}^r\alpha _k(z)e^{\beta _k z}; \ \ \ \ $$$$L(z,f)+H(z,f)=\sum _{k=1}^rF_k(z), \ \ \ \ \ \ \ \ \ $$

where \(\alpha _1, \ldots , \alpha _r\) are meromorphic functions of order \(<1,\) and \(F_1,\ldots , F_r\) are periodic transcendental entire functions, and LH are defined by \(L(z,f)=\sum _{k=1}^pa_k(z)f^{(m_k)}(z+\tau _k)\not \equiv 0,\) \(H(z,f)=\sum _{k=1}^qb_k(z)\big [f^{(n_k)}(z+\zeta _k)\big ]^{s_k} \ \ \) with small meromorphic coefficients \(a_i, b_j.\) By introducing a new method, we obtain the exact forms of the solutions of these two equations under certain growth conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信