具有最大巡回赛长度的巡回赛问题的保证近似率实用算法 2

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingyang Zhao, Mingyu Xiao
{"title":"具有最大巡回赛长度的巡回赛问题的保证近似率实用算法 2","authors":"Jingyang Zhao, Mingyu Xiao","doi":"10.1287/moor.2022.0356","DOIUrl":null,"url":null,"abstract":"The traveling tournament problem (TTP) is a hard but interesting sports scheduling problem inspired by Major League Baseball, which is to design a double round-robin schedule such that each pair of teams plays one game in each other’s home venue, minimizing the total distance traveled by all n teams (n is even). In this paper, we consider TTP-2 (i.e., TTP under the constraint that at most two consecutive home games or away games are allowed for each team). In this paper, we propose practical algorithms for TTP-2 with improved approximation ratios. Because of the different structural properties of the problem, all known algorithms for TTP-2 are different for n/2 being odd and even, and our algorithms are also different for these two cases. For even n/2, our approximation ratio is [Formula: see text], improving the previous result of [Formula: see text]. For odd n/2, our approximation ratio is [Formula: see text], improving the previous result of [Formula: see text]. In practice, our algorithms are easy to implement. Experiments on well-known benchmark sets show that our algorithms beat previously known solutions for all instances with an average improvement of 5.66%.Funding: This work was supported by the National Natural Science Foundation of China [Grants 62372095 and 62172077] and the Sichuan Natural Science Foundation [Grant 2023NSFSC0059].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Algorithms with Guaranteed Approximation Ratio for Traveling Tournament Problem with Maximum Tour Length 2\",\"authors\":\"Jingyang Zhao, Mingyu Xiao\",\"doi\":\"10.1287/moor.2022.0356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traveling tournament problem (TTP) is a hard but interesting sports scheduling problem inspired by Major League Baseball, which is to design a double round-robin schedule such that each pair of teams plays one game in each other’s home venue, minimizing the total distance traveled by all n teams (n is even). In this paper, we consider TTP-2 (i.e., TTP under the constraint that at most two consecutive home games or away games are allowed for each team). In this paper, we propose practical algorithms for TTP-2 with improved approximation ratios. Because of the different structural properties of the problem, all known algorithms for TTP-2 are different for n/2 being odd and even, and our algorithms are also different for these two cases. For even n/2, our approximation ratio is [Formula: see text], improving the previous result of [Formula: see text]. For odd n/2, our approximation ratio is [Formula: see text], improving the previous result of [Formula: see text]. In practice, our algorithms are easy to implement. Experiments on well-known benchmark sets show that our algorithms beat previously known solutions for all instances with an average improvement of 5.66%.Funding: This work was supported by the National Natural Science Foundation of China [Grants 62372095 and 62172077] and the Sichuan Natural Science Foundation [Grant 2023NSFSC0059].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2022.0356\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0356","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

巡回赛问题(TTP)是受美国职业棒球大联盟(Major League Baseball)启发而提出的一个困难但有趣的体育赛事安排问题,即设计一个双循环赛程表,使每对球队在对方主场各打一场比赛,最大限度地减少所有 n 支球队(n 为偶数)的总路程。在本文中,我们考虑的是 TTP-2(即每队最多允许连续进行两场主场比赛或客场比赛的约束条件下的 TTP)。本文针对 TTP-2 提出了改进近似率的实用算法。由于问题的结构特性不同,所有已知的 TTP-2 算法在 n/2 为奇数和偶数时都不同,我们的算法在这两种情况下也不同。对于偶数 n/2,我们的近似率是[公式:见正文],改进了之前的结果[公式:见正文]。对于奇数 n/2,我们的近似率是[公式:见正文],改进了之前的结果[公式:见正文]。实际上,我们的算法很容易实现。在知名基准集上的实验表明,我们的算法在所有实例上都优于之前已知的解决方案,平均提高了 5.66%:本研究得到了国家自然科学基金[62372095 和 62172077]和四川省自然科学基金[2023NSFSC0059]的资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Algorithms with Guaranteed Approximation Ratio for Traveling Tournament Problem with Maximum Tour Length 2
The traveling tournament problem (TTP) is a hard but interesting sports scheduling problem inspired by Major League Baseball, which is to design a double round-robin schedule such that each pair of teams plays one game in each other’s home venue, minimizing the total distance traveled by all n teams (n is even). In this paper, we consider TTP-2 (i.e., TTP under the constraint that at most two consecutive home games or away games are allowed for each team). In this paper, we propose practical algorithms for TTP-2 with improved approximation ratios. Because of the different structural properties of the problem, all known algorithms for TTP-2 are different for n/2 being odd and even, and our algorithms are also different for these two cases. For even n/2, our approximation ratio is [Formula: see text], improving the previous result of [Formula: see text]. For odd n/2, our approximation ratio is [Formula: see text], improving the previous result of [Formula: see text]. In practice, our algorithms are easy to implement. Experiments on well-known benchmark sets show that our algorithms beat previously known solutions for all instances with an average improvement of 5.66%.Funding: This work was supported by the National Natural Science Foundation of China [Grants 62372095 and 62172077] and the Sichuan Natural Science Foundation [Grant 2023NSFSC0059].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信