{"title":"分子模拟揭示 MSHC 中碳酸钙的形成机制","authors":"Jie Zhu, Dejian Shen, Baosheng Jin, Shengxing Wu","doi":"10.1080/08927022.2024.2338376","DOIUrl":null,"url":null,"abstract":"Microbial self-healing concrete (MSHC) is an eco-friendly material that supports low-carbon development. However, the formation mechanism of calcium carbonate (CaCO3) in MSHC remains unclear. This ...","PeriodicalId":18863,"journal":{"name":"Molecular Simulation","volume":"159 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium carbonate formation mechanism in MSHC revealed by molecular simulation\",\"authors\":\"Jie Zhu, Dejian Shen, Baosheng Jin, Shengxing Wu\",\"doi\":\"10.1080/08927022.2024.2338376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbial self-healing concrete (MSHC) is an eco-friendly material that supports low-carbon development. However, the formation mechanism of calcium carbonate (CaCO3) in MSHC remains unclear. This ...\",\"PeriodicalId\":18863,\"journal\":{\"name\":\"Molecular Simulation\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Simulation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/08927022.2024.2338376\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Simulation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/08927022.2024.2338376","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Calcium carbonate formation mechanism in MSHC revealed by molecular simulation
Microbial self-healing concrete (MSHC) is an eco-friendly material that supports low-carbon development. However, the formation mechanism of calcium carbonate (CaCO3) in MSHC remains unclear. This ...
期刊介绍:
Molecular Simulation covers all aspects of research related to, or of importance to, molecular modelling and simulation.
Molecular Simulation brings together the most significant papers concerned with applications of simulation methods, and original contributions to the development of simulation methodology from biology, biochemistry, chemistry, engineering, materials science, medicine and physics.
The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
Molecular Simulation is of interest to all researchers using or developing simulation methods based on statistical mechanics/quantum mechanics. This includes molecular dynamics (MD, AIMD), Monte Carlo, ab initio methods related to simulation, multiscale and coarse graining methods.