{"title":"斯坦纳切割机","authors":"Michele Conforti, Volker Kaibel","doi":"10.1287/moor.2022.0280","DOIUrl":null,"url":null,"abstract":"For a subset T of nodes of an undirected graph G, a T-Steiner cut is a cut [Formula: see text] with [Formula: see text] and [Formula: see text]. The T-Steiner cut dominant of G is the dominant [Formula: see text] of the convex hull of the incidence vectors of the T-Steiner cuts of G. For [Formula: see text], this is the well-understood s-t-cut dominant. Choosing T as the set of all nodes of G, we obtain the cut dominant for which an outer description in the space of the original variables is still not known. We prove that for each integer τ, there is a finite set of inequalities such that for every pair (G, T) with [Formula: see text], the nontrivial facet-defining inequalities of [Formula: see text] are the inequalities that can be obtained via iterated applications of two simple operations, starting from that set. In particular, the absolute values of the coefficients and of the right-hand sides in a description of [Formula: see text] by integral inequalities can be bounded from above by a function of [Formula: see text]. For all [Formula: see text], we provide descriptions of [Formula: see text] by facet-defining inequalities, extending the known descriptions of s-t-cut dominants.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"6 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steiner Cut Dominants\",\"authors\":\"Michele Conforti, Volker Kaibel\",\"doi\":\"10.1287/moor.2022.0280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a subset T of nodes of an undirected graph G, a T-Steiner cut is a cut [Formula: see text] with [Formula: see text] and [Formula: see text]. The T-Steiner cut dominant of G is the dominant [Formula: see text] of the convex hull of the incidence vectors of the T-Steiner cuts of G. For [Formula: see text], this is the well-understood s-t-cut dominant. Choosing T as the set of all nodes of G, we obtain the cut dominant for which an outer description in the space of the original variables is still not known. We prove that for each integer τ, there is a finite set of inequalities such that for every pair (G, T) with [Formula: see text], the nontrivial facet-defining inequalities of [Formula: see text] are the inequalities that can be obtained via iterated applications of two simple operations, starting from that set. In particular, the absolute values of the coefficients and of the right-hand sides in a description of [Formula: see text] by integral inequalities can be bounded from above by a function of [Formula: see text]. For all [Formula: see text], we provide descriptions of [Formula: see text] by facet-defining inequalities, extending the known descriptions of s-t-cut dominants.\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2022.0280\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0280","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
对于无向图 G 的节点子集 T,T-Steiner 切分是具有[公式:见正文]和[公式:见正文]的切分[公式:见正文]。G 的 T-Steiner 切分显式是 G 的 T-Steiner 切分的入射向量凸壳的显式[公式:见正文],对于[公式:见正文],这就是广为人知的 s-t 切分显式。选择 T 作为 G 的所有节点集,我们就得到了切分显式,而对于切分显式,原变量空间中的外部描述仍然未知。我们证明,对于每个整数 τ,都有一个有限的不等式集,即对于每一对具有[公式:见正文]的(G,T),[公式:见正文]的非难面定义不等式都是可以通过迭代应用两个简单运算得到的不等式,从这个集合开始。特别是,在用积分不等式描述[公式:见正文]时,系数和右边的绝对值可以用[公式:见正文]的函数从上而下加以限定。对于所有[公式:见正文],我们通过面定义不等式提供了[公式:见正文]的描述,扩展了已知的 s-t 切占优描述。
For a subset T of nodes of an undirected graph G, a T-Steiner cut is a cut [Formula: see text] with [Formula: see text] and [Formula: see text]. The T-Steiner cut dominant of G is the dominant [Formula: see text] of the convex hull of the incidence vectors of the T-Steiner cuts of G. For [Formula: see text], this is the well-understood s-t-cut dominant. Choosing T as the set of all nodes of G, we obtain the cut dominant for which an outer description in the space of the original variables is still not known. We prove that for each integer τ, there is a finite set of inequalities such that for every pair (G, T) with [Formula: see text], the nontrivial facet-defining inequalities of [Formula: see text] are the inequalities that can be obtained via iterated applications of two simple operations, starting from that set. In particular, the absolute values of the coefficients and of the right-hand sides in a description of [Formula: see text] by integral inequalities can be bounded from above by a function of [Formula: see text]. For all [Formula: see text], we provide descriptions of [Formula: see text] by facet-defining inequalities, extending the known descriptions of s-t-cut dominants.
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.