{"title":"EL Greco 平台:使用真实机器人的新型 Python 编程学习平台","authors":"Minas Rousouliotis, Marios Vasileiou, Nikolaos Manos, Ergina Kavallieratou","doi":"10.1002/cae.22742","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces the El Greco Platform, a Python programming platform for distance learning that employs an educational robot. This website allows prospective learners to remotely control <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>El</mtext>\n </mrow>\n </mrow>\n </semantics></math> Greco, a social humanoid robot designed to be cost-effective, simple to construct, and appropriate for use in education. El Greco is capable of performing multiple tasks, including combined movements. These Robot capabilities can be programmed using either Python code or the Blockly library, which adds an editor to an application that visualizes coding concepts as interlocking blocks. Programming a robot appears to be a significantly more effective and creative method for students to learn a programming language. This educational tool was designed primarily for use by students and allows anyone to learn Python while controlling a robot for free. El Greco Platform features gamification elements that increase the enjoyment and engagement of the learning experience while reinforcing the concepts taught. The survey results on students aged 13–18 revealed that the El Greco Platform captivated the study participants and positively affected their attitudes toward programming and robotics. In addition, it significantly impacted their comprehension of programming and motivated them to seek additional opportunities to expand their knowledge of robotics and programming.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EL Greco Platform: A novel Python programming learning platform that uses a real robot\",\"authors\":\"Minas Rousouliotis, Marios Vasileiou, Nikolaos Manos, Ergina Kavallieratou\",\"doi\":\"10.1002/cae.22742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces the El Greco Platform, a Python programming platform for distance learning that employs an educational robot. This website allows prospective learners to remotely control <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>El</mtext>\\n </mrow>\\n </mrow>\\n </semantics></math> Greco, a social humanoid robot designed to be cost-effective, simple to construct, and appropriate for use in education. El Greco is capable of performing multiple tasks, including combined movements. These Robot capabilities can be programmed using either Python code or the Blockly library, which adds an editor to an application that visualizes coding concepts as interlocking blocks. Programming a robot appears to be a significantly more effective and creative method for students to learn a programming language. This educational tool was designed primarily for use by students and allows anyone to learn Python while controlling a robot for free. El Greco Platform features gamification elements that increase the enjoyment and engagement of the learning experience while reinforcing the concepts taught. The survey results on students aged 13–18 revealed that the El Greco Platform captivated the study participants and positively affected their attitudes toward programming and robotics. In addition, it significantly impacted their comprehension of programming and motivated them to seek additional opportunities to expand their knowledge of robotics and programming.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cae.22742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.22742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
EL Greco Platform: A novel Python programming learning platform that uses a real robot
This paper introduces the El Greco Platform, a Python programming platform for distance learning that employs an educational robot. This website allows prospective learners to remotely control Greco, a social humanoid robot designed to be cost-effective, simple to construct, and appropriate for use in education. El Greco is capable of performing multiple tasks, including combined movements. These Robot capabilities can be programmed using either Python code or the Blockly library, which adds an editor to an application that visualizes coding concepts as interlocking blocks. Programming a robot appears to be a significantly more effective and creative method for students to learn a programming language. This educational tool was designed primarily for use by students and allows anyone to learn Python while controlling a robot for free. El Greco Platform features gamification elements that increase the enjoyment and engagement of the learning experience while reinforcing the concepts taught. The survey results on students aged 13–18 revealed that the El Greco Platform captivated the study participants and positively affected their attitudes toward programming and robotics. In addition, it significantly impacted their comprehension of programming and motivated them to seek additional opportunities to expand their knowledge of robotics and programming.