精选甲基喹啉基膦酸和喹啉基膦酸的合成与光谱特性;基于 DFT 计算的合理化分析

IF 1.7 3区 化学 Q3 CHEMISTRY, ORGANIC
Jacek E. Nycz, Nataliya Karaush-Karmazin, Boris Minaev, Valentina Minaeva, Jan G. Małecki, Maria Książek, Daniel Swoboda, Joachim Kusz
{"title":"精选甲基喹啉基膦酸和喹啉基膦酸的合成与光谱特性;基于 DFT 计算的合理化分析","authors":"Jacek E. Nycz, Nataliya Karaush-Karmazin, Boris Minaev, Valentina Minaeva, Jan G. Małecki, Maria Książek, Daniel Swoboda, Joachim Kusz","doi":"10.2174/0113852728292818240301052024","DOIUrl":null,"url":null,"abstract":": The quinoline derivatives arouse interest due to their broad spectrum of activity. The phosphorus compounds under investigation, quinolinylphosphonic and -phosphinic acids and aminophenylphosphonic and -phosphinic acids, possess potent bioactive properties, mimicking amino acids, phosphate esters, anhydrides, or carboxylate groups in enzymes. Despite its potential value, there is no reported example of quinolinylphosphonic or - phosphinic acids with phosphonic or phosphinic functional groups connected directly to the benzene ring in quinoline constitution. The selected quinoline derivatives have been synthesized by adopting the Skraup-Doebner-Von Miller reaction. To this end, the syntheses of aminophenylphosphonic and -phosphinic acids were conducted and afforded the target products with high yield. All structures have been proven by the combination of NMR, IR, MS, and HRMS techniques and were rationalized based on DFT calculation. The structures of triphenylphosphane oxide (TPO), diphenylphosphosphinic acid (1c), (tert-butyl)phenylphosphinic acid (1d) and bis(3-nitrophenyl)phosphinic acid (2c) were determined by single-crystal X-ray diffraction measurements. The Hirshfeld surface analyses for 1c, 1d and 2c were performed to analyze the intermolecular interactions in their crystal structures. Rephrase: According to our findings, the presence of numerous intermolecular PO•••H, NO•••H, and CH•••O contacts stabilizes the crystal structures. The NO•••H interactions manifest in the IR spectrum of 2c crystal as a narrow band with a maximum at 3088 cm-1. The PO•••H intermolecular interactions are attributed to a weak experimental band at 1288 cm-1. background: The quinoline derivatives arouse interest due to their broad spectrum of activity. The phosphorus compounds under investigation, such as quinolinylphosphonic or quinolinylphosphinic acids, aminophenylphosphonic or aminophenylphosphinic acids aminophenylphosphonic or aminophenylphosphinic acids, possess potent properties bioactive properties, mimicking amino acids, phosphate esters, anhydrides, or carboxylate groups in enzymes. Despite its potential value, there is no reported example of quinolinylphosphonic and quinolinylphosphinic acids with phosphonic and phosphinic functional groups directly connected to the benzene ring in quinoline constitution to the best of our knowledge, according to literature data. objective: Syntheses and spectroscopic characterization of selected methyl quinolinylphosphonic and quinolinylphosphinic acids, rationalized based on DFT calculation method: All the structures have been proven by the combination of NMR, IR, MS, and HRMS and rationalized based on DFT calculation. The structures of triphenylphosphane oxide (TPO), diphenylphosphosphinic acid (1c), (tert-butyl)phenylphosphinic acid (1d) and bis(3-nitrophenyl)phosphinic acid (2c) were determined by single-crystal X-ray diffraction measurements.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syntheses and Spectroscopic Characterization of Selected Methyl Quinolinylphosphonic and Quinolinylphosphinic Acids; Rationalized Based on DFT calculation\",\"authors\":\"Jacek E. Nycz, Nataliya Karaush-Karmazin, Boris Minaev, Valentina Minaeva, Jan G. Małecki, Maria Książek, Daniel Swoboda, Joachim Kusz\",\"doi\":\"10.2174/0113852728292818240301052024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The quinoline derivatives arouse interest due to their broad spectrum of activity. The phosphorus compounds under investigation, quinolinylphosphonic and -phosphinic acids and aminophenylphosphonic and -phosphinic acids, possess potent bioactive properties, mimicking amino acids, phosphate esters, anhydrides, or carboxylate groups in enzymes. Despite its potential value, there is no reported example of quinolinylphosphonic or - phosphinic acids with phosphonic or phosphinic functional groups connected directly to the benzene ring in quinoline constitution. The selected quinoline derivatives have been synthesized by adopting the Skraup-Doebner-Von Miller reaction. To this end, the syntheses of aminophenylphosphonic and -phosphinic acids were conducted and afforded the target products with high yield. All structures have been proven by the combination of NMR, IR, MS, and HRMS techniques and were rationalized based on DFT calculation. The structures of triphenylphosphane oxide (TPO), diphenylphosphosphinic acid (1c), (tert-butyl)phenylphosphinic acid (1d) and bis(3-nitrophenyl)phosphinic acid (2c) were determined by single-crystal X-ray diffraction measurements. The Hirshfeld surface analyses for 1c, 1d and 2c were performed to analyze the intermolecular interactions in their crystal structures. Rephrase: According to our findings, the presence of numerous intermolecular PO•••H, NO•••H, and CH•••O contacts stabilizes the crystal structures. The NO•••H interactions manifest in the IR spectrum of 2c crystal as a narrow band with a maximum at 3088 cm-1. The PO•••H intermolecular interactions are attributed to a weak experimental band at 1288 cm-1. background: The quinoline derivatives arouse interest due to their broad spectrum of activity. The phosphorus compounds under investigation, such as quinolinylphosphonic or quinolinylphosphinic acids, aminophenylphosphonic or aminophenylphosphinic acids aminophenylphosphonic or aminophenylphosphinic acids, possess potent properties bioactive properties, mimicking amino acids, phosphate esters, anhydrides, or carboxylate groups in enzymes. Despite its potential value, there is no reported example of quinolinylphosphonic and quinolinylphosphinic acids with phosphonic and phosphinic functional groups directly connected to the benzene ring in quinoline constitution to the best of our knowledge, according to literature data. objective: Syntheses and spectroscopic characterization of selected methyl quinolinylphosphonic and quinolinylphosphinic acids, rationalized based on DFT calculation method: All the structures have been proven by the combination of NMR, IR, MS, and HRMS and rationalized based on DFT calculation. The structures of triphenylphosphane oxide (TPO), diphenylphosphosphinic acid (1c), (tert-butyl)phenylphosphinic acid (1d) and bis(3-nitrophenyl)phosphinic acid (2c) were determined by single-crystal X-ray diffraction measurements.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728292818240301052024\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728292818240301052024","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

:喹啉衍生物因其广泛的活性而引起人们的兴趣。正在研究的磷化合物,即喹啉基膦酸和-膦酸以及氨基苯基膦酸和-膦酸,具有很强的生物活性,可模拟酶中的氨基酸、磷酸酯、酸酐或羧基。尽管喹啉基膦酸或-膦酸具有潜在的价值,但目前还没有关于其膦酸或膦酸官能团直接与喹啉结构中的苯环相连的实例报道。所选的喹啉衍生物是通过 Skraup-Doebner-Von Miller 反应合成的。为此,进行了氨基苯基膦酸和-膦酸的合成,并以高产率得到了目标产物。所有结构都已通过核磁共振、红外光谱、质谱和 HRMS 技术的结合得到证实,并在 DFT 计算的基础上得到了合理的解释。通过单晶 X 射线衍射测量确定了三苯基氧化膦(TPO)、二苯基膦酸(1c)、(叔丁基)苯基膦酸(1d)和双(3-硝基苯基)膦酸(2c)的结构。对 1c、1d 和 2c 进行了 Hirshfeld 表面分析,以分析其晶体结构中的分子间相互作用。改写:根据我们的研究结果,大量分子间 PO--H、NO--H 和 CH-O 接触的存在稳定了晶体结构。在 2c 晶体的红外光谱中,NO--H 相互作用表现为一条窄带,最大值在 3088 cm-1 处。PO--H分子间的相互作用产生于1288 cm-1处的微弱实验带:喹啉衍生物因其广泛的活性谱而引起人们的兴趣。正在研究的磷化合物,如喹啉基膦酸或喹啉基膦酸、氨基苯基膦酸或氨基苯基膦酸、氨基苯基膦酸或氨基苯基膦酸,具有强大的生物活性特性,可模拟酶中的氨基酸、磷酸酯、酸酐或羧基。尽管喹啉基膦酸和喹啉基膦酸具有潜在的价值,但就我们所知,根据文献资料,还没有报道过喹啉基膦酸和喹啉基膦酸的膦酸官能团直接连接到喹啉结构中的苯环上:根据 DFT 计算方法,对选定的甲基喹啉基膦酸和喹啉基膦酸进行合成和光谱鉴定:通过核磁共振、红外光谱、质谱和 HRMS 的综合分析,证明了所有的结构,并基于 DFT 计算对其进行了合理化。通过单晶 X 射线衍射测量确定了三苯基氧化膦(TPO)、二苯基膦酸(1c)、(叔丁基)苯基膦酸(1d)和双(3-硝基苯基)膦酸(2c)的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Syntheses and Spectroscopic Characterization of Selected Methyl Quinolinylphosphonic and Quinolinylphosphinic Acids; Rationalized Based on DFT calculation
: The quinoline derivatives arouse interest due to their broad spectrum of activity. The phosphorus compounds under investigation, quinolinylphosphonic and -phosphinic acids and aminophenylphosphonic and -phosphinic acids, possess potent bioactive properties, mimicking amino acids, phosphate esters, anhydrides, or carboxylate groups in enzymes. Despite its potential value, there is no reported example of quinolinylphosphonic or - phosphinic acids with phosphonic or phosphinic functional groups connected directly to the benzene ring in quinoline constitution. The selected quinoline derivatives have been synthesized by adopting the Skraup-Doebner-Von Miller reaction. To this end, the syntheses of aminophenylphosphonic and -phosphinic acids were conducted and afforded the target products with high yield. All structures have been proven by the combination of NMR, IR, MS, and HRMS techniques and were rationalized based on DFT calculation. The structures of triphenylphosphane oxide (TPO), diphenylphosphosphinic acid (1c), (tert-butyl)phenylphosphinic acid (1d) and bis(3-nitrophenyl)phosphinic acid (2c) were determined by single-crystal X-ray diffraction measurements. The Hirshfeld surface analyses for 1c, 1d and 2c were performed to analyze the intermolecular interactions in their crystal structures. Rephrase: According to our findings, the presence of numerous intermolecular PO•••H, NO•••H, and CH•••O contacts stabilizes the crystal structures. The NO•••H interactions manifest in the IR spectrum of 2c crystal as a narrow band with a maximum at 3088 cm-1. The PO•••H intermolecular interactions are attributed to a weak experimental band at 1288 cm-1. background: The quinoline derivatives arouse interest due to their broad spectrum of activity. The phosphorus compounds under investigation, such as quinolinylphosphonic or quinolinylphosphinic acids, aminophenylphosphonic or aminophenylphosphinic acids aminophenylphosphonic or aminophenylphosphinic acids, possess potent properties bioactive properties, mimicking amino acids, phosphate esters, anhydrides, or carboxylate groups in enzymes. Despite its potential value, there is no reported example of quinolinylphosphonic and quinolinylphosphinic acids with phosphonic and phosphinic functional groups directly connected to the benzene ring in quinoline constitution to the best of our knowledge, according to literature data. objective: Syntheses and spectroscopic characterization of selected methyl quinolinylphosphonic and quinolinylphosphinic acids, rationalized based on DFT calculation method: All the structures have been proven by the combination of NMR, IR, MS, and HRMS and rationalized based on DFT calculation. The structures of triphenylphosphane oxide (TPO), diphenylphosphosphinic acid (1c), (tert-butyl)phenylphosphinic acid (1d) and bis(3-nitrophenyl)phosphinic acid (2c) were determined by single-crystal X-ray diffraction measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Organic Chemistry
Current Organic Chemistry 化学-有机化学
CiteScore
3.70
自引率
7.70%
发文量
76
审稿时长
1 months
期刊介绍: Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信