论苏里斯可积分图中的复杂动力学

Yasutaka Hanada, Akira Shudo
{"title":"论苏里斯可积分图中的复杂动力学","authors":"Yasutaka Hanada, Akira Shudo","doi":"arxiv-2403.20023","DOIUrl":null,"url":null,"abstract":"Quantum tunneling in a two-dimensional integrable map is studied. The orbits\nof the map are all confined to the curves specified by the one-dimensional\nHamiltonian. It is found that the behavior of tunneling splitting for the\nintegrable map and the associated Hamiltonian system is qualitatively the same,\nwith only a slight difference in magnitude. However, the tunneling tails of the\nwave functions, obtained by superposing the eigenfunctions that form the\ndoublet, exhibit significant difference. To explore the origin of the\ndifference, we observe the classical dynamics in the complex plane and find\nthat the existence of branch points appearing in the potential function of the\nintegrable map could play the role for yielding non-trivial behavior in the\ntunneling tail. The result highlights the subtlety of quantum tunneling, which\ncannot be captured in nature only by the dynamics in the real plane.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On complex dynamics in a Suris's integrable map\",\"authors\":\"Yasutaka Hanada, Akira Shudo\",\"doi\":\"arxiv-2403.20023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum tunneling in a two-dimensional integrable map is studied. The orbits\\nof the map are all confined to the curves specified by the one-dimensional\\nHamiltonian. It is found that the behavior of tunneling splitting for the\\nintegrable map and the associated Hamiltonian system is qualitatively the same,\\nwith only a slight difference in magnitude. However, the tunneling tails of the\\nwave functions, obtained by superposing the eigenfunctions that form the\\ndoublet, exhibit significant difference. To explore the origin of the\\ndifference, we observe the classical dynamics in the complex plane and find\\nthat the existence of branch points appearing in the potential function of the\\nintegrable map could play the role for yielding non-trivial behavior in the\\ntunneling tail. The result highlights the subtlety of quantum tunneling, which\\ncannot be captured in nature only by the dynamics in the real plane.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.20023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.20023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了二维可积分映射中的量子隧道现象。该映射的轨道都被限制在一维哈密尔顿系统所指定的曲线上。研究发现,可积分图和相关哈密顿系统的隧穿分裂行为在性质上是相同的,只是在量级上略有不同。然而,通过叠加构成双特的特征函数而得到的波函数的隧穿尾部却表现出显著差异。为了探索这种差异的根源,我们观察了复平面内的经典动力学,发现在可积分映射的势函数中出现的分支点的存在可能是产生隧道尾部非三维行为的原因。这一结果凸显了量子隧道效应的微妙之处,而自然界中的量子隧道效应是无法仅通过实平面上的动力学来捕捉的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On complex dynamics in a Suris's integrable map
Quantum tunneling in a two-dimensional integrable map is studied. The orbits of the map are all confined to the curves specified by the one-dimensional Hamiltonian. It is found that the behavior of tunneling splitting for the integrable map and the associated Hamiltonian system is qualitatively the same, with only a slight difference in magnitude. However, the tunneling tails of the wave functions, obtained by superposing the eigenfunctions that form the doublet, exhibit significant difference. To explore the origin of the difference, we observe the classical dynamics in the complex plane and find that the existence of branch points appearing in the potential function of the integrable map could play the role for yielding non-trivial behavior in the tunneling tail. The result highlights the subtlety of quantum tunneling, which cannot be captured in nature only by the dynamics in the real plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信