速度梯度张量的均匀分解

IF 2.5 3区 工程技术
Chenxi Ma, Chaoqun Liu
{"title":"速度梯度张量的均匀分解","authors":"Chenxi Ma,&nbsp;Chaoqun Liu","doi":"10.1007/s42241-024-0005-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the principal decomposition of the velocity gradient tensor [∇<b><i>v</i></b>] is discussed in 3 cases based on the discriminant ∆: ∆ &lt; 0 with 1 real eigen value and a pair of conjugate complex eigen values, ∆ &gt; 0 with 3 distinct real eigen values, and ∆ = 0 with 1 or 2 distinct real eigen values. The velocity gradient tensor can also be classified as rotation point, which can be decomposed into three parts, i.e., rotation [<i>R</i>], shear [<i>S</i>] and stretching/compression [<i>SC</i>], and non-rotation point, we defined a new resistance term [<i>L</i>], and the tensor can be decomposed into three parts, i.e., resistance [<i>L</i>], shear [<i>S</i>] and stretching/compression [<i>SC</i>]. Example matric are also displayed to demonstrate the new decomposition. Connections of principal decomposition between 3 different cases, and between Resistance and Liutex will also be discussed.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"36 1","pages":"24 - 34"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform decomposition of velocity gradient tensor\",\"authors\":\"Chenxi Ma,&nbsp;Chaoqun Liu\",\"doi\":\"10.1007/s42241-024-0005-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the principal decomposition of the velocity gradient tensor [∇<b><i>v</i></b>] is discussed in 3 cases based on the discriminant ∆: ∆ &lt; 0 with 1 real eigen value and a pair of conjugate complex eigen values, ∆ &gt; 0 with 3 distinct real eigen values, and ∆ = 0 with 1 or 2 distinct real eigen values. The velocity gradient tensor can also be classified as rotation point, which can be decomposed into three parts, i.e., rotation [<i>R</i>], shear [<i>S</i>] and stretching/compression [<i>SC</i>], and non-rotation point, we defined a new resistance term [<i>L</i>], and the tensor can be decomposed into three parts, i.e., resistance [<i>L</i>], shear [<i>S</i>] and stretching/compression [<i>SC</i>]. Example matric are also displayed to demonstrate the new decomposition. Connections of principal decomposition between 3 different cases, and between Resistance and Liutex will also be discussed.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":\"36 1\",\"pages\":\"24 - 34\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-024-0005-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0005-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了速度梯度张量[∇v]基于判别式 ∆ 的 3 种主分解情况:∆ < 0 具有 1 个实特征值和一对共轭复特征值;∆ > 0 具有 3 个不同的实特征值;∆ = 0 具有 1 或 2 个不同的实特征值。速度梯度张量还可分为旋转点和非旋转点,前者可分解为三个部分,即旋转[R]、剪切[S]和拉伸/压缩[SC];后者定义了一个新的阻力项[L],张量可分解为三个部分,即阻力[L]、剪切[S]和拉伸/压缩[SC]。同时还展示了示例矩阵,以演示新的分解方法。此外,还将讨论 3 种不同情况下的本构分解之间的联系,以及阻力和 Liutex 之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform decomposition of velocity gradient tensor

In this paper, the principal decomposition of the velocity gradient tensor [∇v] is discussed in 3 cases based on the discriminant ∆: ∆ < 0 with 1 real eigen value and a pair of conjugate complex eigen values, ∆ > 0 with 3 distinct real eigen values, and ∆ = 0 with 1 or 2 distinct real eigen values. The velocity gradient tensor can also be classified as rotation point, which can be decomposed into three parts, i.e., rotation [R], shear [S] and stretching/compression [SC], and non-rotation point, we defined a new resistance term [L], and the tensor can be decomposed into three parts, i.e., resistance [L], shear [S] and stretching/compression [SC]. Example matric are also displayed to demonstrate the new decomposition. Connections of principal decomposition between 3 different cases, and between Resistance and Liutex will also be discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
12.00%
发文量
2374
审稿时长
4.6 months
期刊介绍: Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信