阿布罗维茨-拉迪克链的粒子散射与融合

Alberto Brollo, Herbert Spohn
{"title":"阿布罗维茨-拉迪克链的粒子散射与融合","authors":"Alberto Brollo, Herbert Spohn","doi":"arxiv-2404.07095","DOIUrl":null,"url":null,"abstract":"The Ablowitz-Ladik chain is an integrable discretized version of the\nnonlinear Schr\\\"{o}dinger equation. We report on a novel underlying Hamiltonian\nparticle system with properties similar to the ones known for the classical\nToda chain and Calogero fluid with $1/\\sinh^2$ pair interaction. Boundary\nconditions are imposed such that, both in the distant past and future,\nparticles have a constant velocity. We establish the many-particle scattering\nfor the Ablowitz-Ladik chain and obtain properties known for generic integrable\nmany-body systems. For a specific choice of the chain, real initial data remain\nreal in the course of time. Then, asymptotically, particles move in pairs with\na velocity-dependent size and scattering shifts are governed by the fusion\nrule.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle Scattering and Fusion for the Ablowitz-Ladik Chain\",\"authors\":\"Alberto Brollo, Herbert Spohn\",\"doi\":\"arxiv-2404.07095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ablowitz-Ladik chain is an integrable discretized version of the\\nnonlinear Schr\\\\\\\"{o}dinger equation. We report on a novel underlying Hamiltonian\\nparticle system with properties similar to the ones known for the classical\\nToda chain and Calogero fluid with $1/\\\\sinh^2$ pair interaction. Boundary\\nconditions are imposed such that, both in the distant past and future,\\nparticles have a constant velocity. We establish the many-particle scattering\\nfor the Ablowitz-Ladik chain and obtain properties known for generic integrable\\nmany-body systems. For a specific choice of the chain, real initial data remain\\nreal in the course of time. Then, asymptotically, particles move in pairs with\\na velocity-dependent size and scattering shifts are governed by the fusion\\nrule.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.07095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.07095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Ablowitz-Ladik 链是当时非线性薛定谔方程的可积分离散化版本。我们报告了一个新颖的底层哈密顿粒子系统,其性质类似于已知的经典托达链和卡洛吉罗流体的1/\sinh^2$对相互作用。我们施加了一些边界条件,使得粒子在遥远的过去和未来都具有恒定的速度。我们建立了阿布罗维茨-拉迪克链的多粒子散射,并获得了一般积分多体系统的已知性质。对于链的特定选择,真实的初始数据在时间过程中保持真实。然后,渐近地,粒子成对运动,其大小与速度有关,散射位移受聚变规则支配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Scattering and Fusion for the Ablowitz-Ladik Chain
The Ablowitz-Ladik chain is an integrable discretized version of the nonlinear Schr\"{o}dinger equation. We report on a novel underlying Hamiltonian particle system with properties similar to the ones known for the classical Toda chain and Calogero fluid with $1/\sinh^2$ pair interaction. Boundary conditions are imposed such that, both in the distant past and future, particles have a constant velocity. We establish the many-particle scattering for the Ablowitz-Ladik chain and obtain properties known for generic integrable many-body systems. For a specific choice of the chain, real initial data remain real in the course of time. Then, asymptotically, particles move in pairs with a velocity-dependent size and scattering shifts are governed by the fusion rule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信