广田-萨摩方程的三浦变换和大时间行为

Deng-Shan Wang, Cheng Zhu, Xiaodong Zhu
{"title":"广田-萨摩方程的三浦变换和大时间行为","authors":"Deng-Shan Wang, Cheng Zhu, Xiaodong Zhu","doi":"arxiv-2404.01215","DOIUrl":null,"url":null,"abstract":"The good Boussinesq equation has several modified versions such as the\nmodified Boussinesq equation, Mikhailov-Lenells equation and Hirota-Satsuma\nequation. This work builds the full relations among these equations by Miura\ntransformation and invertible linear transformations and draws a pyramid\ndiagram to demonstrate such relations. The direct and inverse spectral analysis\nshows that the solution of Riemann-Hilbert problem for Hirota-Satsuma equation\nhas simple pole at origin, the solution of Riemann-Hilbert problem for the good\nBoussinesq equation has double pole at origin, while the solution of\nRiemann-Hilbert problem for the modified Boussinesq equation and\nMikhailov-Lenells equation doesn't have singularity at origin. Further, the\nlarge-time asymptotic behaviors of the Hirota-Satsuma equation with Schwartz\nclass initial value is studied by Deift-Zhou nonlinear steepest descent\nanalysis. In such initial condition, the asymptotic expressions of the\nHirota-Satsuma equation and good Boussinesq equation away from the origin are\nproposed and it is displayed that the leading term of asymptotic formulas match\nwell with direct numerical simulations.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"279 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miura transformations and large-time behaviors of the Hirota-Satsuma equation\",\"authors\":\"Deng-Shan Wang, Cheng Zhu, Xiaodong Zhu\",\"doi\":\"arxiv-2404.01215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The good Boussinesq equation has several modified versions such as the\\nmodified Boussinesq equation, Mikhailov-Lenells equation and Hirota-Satsuma\\nequation. This work builds the full relations among these equations by Miura\\ntransformation and invertible linear transformations and draws a pyramid\\ndiagram to demonstrate such relations. The direct and inverse spectral analysis\\nshows that the solution of Riemann-Hilbert problem for Hirota-Satsuma equation\\nhas simple pole at origin, the solution of Riemann-Hilbert problem for the good\\nBoussinesq equation has double pole at origin, while the solution of\\nRiemann-Hilbert problem for the modified Boussinesq equation and\\nMikhailov-Lenells equation doesn't have singularity at origin. Further, the\\nlarge-time asymptotic behaviors of the Hirota-Satsuma equation with Schwartz\\nclass initial value is studied by Deift-Zhou nonlinear steepest descent\\nanalysis. In such initial condition, the asymptotic expressions of the\\nHirota-Satsuma equation and good Boussinesq equation away from the origin are\\nproposed and it is displayed that the leading term of asymptotic formulas match\\nwell with direct numerical simulations.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"279 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.01215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.01215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

优秀的布西内斯克方程有多个修正版本,如修正布西内斯克方程、米哈伊洛夫-列奈尔斯方程和广田-萨苏马方程。本研究通过米乌拉变换和可逆线性变换建立了这些方程之间的完整关系,并绘制了金字塔图来展示这些关系。直接和逆谱分析表明,Hirota-Satsuma 方程的黎曼-希尔伯特问题解在原点有单极,良好布辛斯方程的黎曼-希尔伯特问题解在原点有双极,而修正布辛斯方程和米哈伊洛夫-列奈尔斯方程的黎曼-希尔伯特问题解在原点没有奇点。此外,Deift-Zhou 非线性最陡下降分析研究了具有 Schwartzclass 初始值的 Hirota-Satsuma 方程的大时间渐近行为。在这样的初始条件下,提出了广田-萨摩方程和良好的布森斯方程远离原点的渐近表达式,结果表明渐近公式的前导项与直接数值模拟非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Miura transformations and large-time behaviors of the Hirota-Satsuma equation
The good Boussinesq equation has several modified versions such as the modified Boussinesq equation, Mikhailov-Lenells equation and Hirota-Satsuma equation. This work builds the full relations among these equations by Miura transformation and invertible linear transformations and draws a pyramid diagram to demonstrate such relations. The direct and inverse spectral analysis shows that the solution of Riemann-Hilbert problem for Hirota-Satsuma equation has simple pole at origin, the solution of Riemann-Hilbert problem for the good Boussinesq equation has double pole at origin, while the solution of Riemann-Hilbert problem for the modified Boussinesq equation and Mikhailov-Lenells equation doesn't have singularity at origin. Further, the large-time asymptotic behaviors of the Hirota-Satsuma equation with Schwartz class initial value is studied by Deift-Zhou nonlinear steepest descent analysis. In such initial condition, the asymptotic expressions of the Hirota-Satsuma equation and good Boussinesq equation away from the origin are proposed and it is displayed that the leading term of asymptotic formulas match well with direct numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信