Brennan McCann, Morad Nazari, Christopher Petersen
{"title":"特殊欧几里得群 SE(3) 上有约束和无约束静态优化的数值方法","authors":"Brennan McCann, Morad Nazari, Christopher Petersen","doi":"10.1007/s10957-024-02431-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, rigid body static optimization is investigated on the Riemannian manifold of rigid body motion groups. This manifold, which is also a matrix manifold, provides a framework to formulate translational and rotational motions of the body, while considering any coupling between those motions, and uses members of the special orthogonal group <span>\\(\\textsf{SO}(3)\\)</span> to represent the rotation. Hence, it is called the special Euclidean group <span>\\(\\textsf{SE}(3)\\)</span>. Formalism of rigid body motion on <span>\\(\\textsf{SE}(3)\\)</span> does not fall victim to singularity or non-uniqueness issues associated with attitude parameterization sets. Benefiting from Riemannian matrix manifolds and their metrics, a generic framework for unconstrained static optimization and a customizable framework for constrained static optimization are proposed that build a foundation for dynamic optimization of rigid body motions on <span>\\(\\textsf{SE}(3)\\)</span> and its tangent bundle. The study of Riemannian manifolds from the perspective of rigid body motion introduced here provides an accurate tool for optimization of rigid body motions, avoiding any biases that could otherwise occur in rotational motion representation if attitude parameterization sets were used.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Approaches for Constrained and Unconstrained, Static Optimization on the Special Euclidean Group SE(3)\",\"authors\":\"Brennan McCann, Morad Nazari, Christopher Petersen\",\"doi\":\"10.1007/s10957-024-02431-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, rigid body static optimization is investigated on the Riemannian manifold of rigid body motion groups. This manifold, which is also a matrix manifold, provides a framework to formulate translational and rotational motions of the body, while considering any coupling between those motions, and uses members of the special orthogonal group <span>\\\\(\\\\textsf{SO}(3)\\\\)</span> to represent the rotation. Hence, it is called the special Euclidean group <span>\\\\(\\\\textsf{SE}(3)\\\\)</span>. Formalism of rigid body motion on <span>\\\\(\\\\textsf{SE}(3)\\\\)</span> does not fall victim to singularity or non-uniqueness issues associated with attitude parameterization sets. Benefiting from Riemannian matrix manifolds and their metrics, a generic framework for unconstrained static optimization and a customizable framework for constrained static optimization are proposed that build a foundation for dynamic optimization of rigid body motions on <span>\\\\(\\\\textsf{SE}(3)\\\\)</span> and its tangent bundle. The study of Riemannian manifolds from the perspective of rigid body motion introduced here provides an accurate tool for optimization of rigid body motions, avoiding any biases that could otherwise occur in rotational motion representation if attitude parameterization sets were used.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02431-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02431-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical Approaches for Constrained and Unconstrained, Static Optimization on the Special Euclidean Group SE(3)
In this paper, rigid body static optimization is investigated on the Riemannian manifold of rigid body motion groups. This manifold, which is also a matrix manifold, provides a framework to formulate translational and rotational motions of the body, while considering any coupling between those motions, and uses members of the special orthogonal group \(\textsf{SO}(3)\) to represent the rotation. Hence, it is called the special Euclidean group \(\textsf{SE}(3)\). Formalism of rigid body motion on \(\textsf{SE}(3)\) does not fall victim to singularity or non-uniqueness issues associated with attitude parameterization sets. Benefiting from Riemannian matrix manifolds and their metrics, a generic framework for unconstrained static optimization and a customizable framework for constrained static optimization are proposed that build a foundation for dynamic optimization of rigid body motions on \(\textsf{SE}(3)\) and its tangent bundle. The study of Riemannian manifolds from the perspective of rigid body motion introduced here provides an accurate tool for optimization of rigid body motions, avoiding any biases that could otherwise occur in rotational motion representation if attitude parameterization sets were used.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.