不可行和关键可行的最优控制

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Regina S. Burachik, C. Yalçın Kaya, Walaa M. Moursi
{"title":"不可行和关键可行的最优控制","authors":"Regina S. Burachik, C. Yalçın Kaya, Walaa M. Moursi","doi":"10.1007/s10957-024-02419-0","DOIUrl":null,"url":null,"abstract":"<p>We consider optimal control problems involving two constraint sets: one comprised of linear ordinary differential equations with the initial and terminal states specified and the other defined by the control variables constrained by simple bounds. When the intersection of these two sets is empty, typically because the bounds on the control variables are too tight, the problem becomes infeasible. In this paper, we prove that, under a controllability assumption, the “best approximation” optimal control minimizing the distance (and thus finding the “gap”) between the two sets is of bang–bang type, with the “gap function” playing the role of a switching function. The critically feasible control solution (the case when one has the smallest control bound for which the problem is feasible) is also shown to be of bang–bang type. We present the full analytical solution for the critically feasible problem involving the (simple but rich enough) double integrator. We illustrate the overall results numerically on various challenging example problems.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"185 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infeasible and Critically Feasible Optimal Control\",\"authors\":\"Regina S. Burachik, C. Yalçın Kaya, Walaa M. Moursi\",\"doi\":\"10.1007/s10957-024-02419-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider optimal control problems involving two constraint sets: one comprised of linear ordinary differential equations with the initial and terminal states specified and the other defined by the control variables constrained by simple bounds. When the intersection of these two sets is empty, typically because the bounds on the control variables are too tight, the problem becomes infeasible. In this paper, we prove that, under a controllability assumption, the “best approximation” optimal control minimizing the distance (and thus finding the “gap”) between the two sets is of bang–bang type, with the “gap function” playing the role of a switching function. The critically feasible control solution (the case when one has the smallest control bound for which the problem is feasible) is also shown to be of bang–bang type. We present the full analytical solution for the critically feasible problem involving the (simple but rich enough) double integrator. We illustrate the overall results numerically on various challenging example problems.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02419-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02419-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了涉及两个约束集的最优控制问题:一个约束集由线性常微分方程组成,并指定了初始和终结状态;另一个约束集由控制变量定义,并受简单约束条件的限制。当这两个约束集的交集为空时,通常是因为控制变量的约束太紧,问题变得不可行。在本文中,我们证明了在可控性假设下,最小化两个集合间距离(从而找到 "间隙")的 "最佳近似 "最优控制是砰砰型的,"间隙函数 "扮演着开关函数的角色。临界可行控制解(问题可行的最小控制边界)也是砰砰型的。我们提出了涉及(简单但足够丰富的)双积分器的临界可行问题的完整解析解。我们在各种具有挑战性的示例问题上对总体结果进行了数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Infeasible and Critically Feasible Optimal Control

Infeasible and Critically Feasible Optimal Control

We consider optimal control problems involving two constraint sets: one comprised of linear ordinary differential equations with the initial and terminal states specified and the other defined by the control variables constrained by simple bounds. When the intersection of these two sets is empty, typically because the bounds on the control variables are too tight, the problem becomes infeasible. In this paper, we prove that, under a controllability assumption, the “best approximation” optimal control minimizing the distance (and thus finding the “gap”) between the two sets is of bang–bang type, with the “gap function” playing the role of a switching function. The critically feasible control solution (the case when one has the smallest control bound for which the problem is feasible) is also shown to be of bang–bang type. We present the full analytical solution for the critically feasible problem involving the (simple but rich enough) double integrator. We illustrate the overall results numerically on various challenging example problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信