在相等约束条件下计算二阶点:重温弗莱彻的增量拉格朗日

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Florentin Goyens, Armin Eftekhari, Nicolas Boumal
{"title":"在相等约束条件下计算二阶点:重温弗莱彻的增量拉格朗日","authors":"Florentin Goyens, Armin Eftekhari, Nicolas Boumal","doi":"10.1007/s10957-024-02421-6","DOIUrl":null,"url":null,"abstract":"<p>We address the problem of minimizing a smooth function under smooth equality constraints. Under regularity assumptions on these constraints, we propose a notion of approximate first- and second-order critical point which relies on the geometric formalism of Riemannian optimization. Using a smooth exact penalty function known as Fletcher’s augmented Lagrangian, we propose an algorithm to minimize the penalized cost function which reaches <span>\\(\\varepsilon \\)</span>-approximate second-order critical points of the original optimization problem in at most <span>\\({\\mathcal {O}}(\\varepsilon ^{-3})\\)</span> iterations. This improves on current best theoretical bounds. Along the way, we show new properties of Fletcher’s augmented Lagrangian, which may be of independent interest.\n</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"51 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Second-Order Points Under Equality Constraints: Revisiting Fletcher’s Augmented Lagrangian\",\"authors\":\"Florentin Goyens, Armin Eftekhari, Nicolas Boumal\",\"doi\":\"10.1007/s10957-024-02421-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We address the problem of minimizing a smooth function under smooth equality constraints. Under regularity assumptions on these constraints, we propose a notion of approximate first- and second-order critical point which relies on the geometric formalism of Riemannian optimization. Using a smooth exact penalty function known as Fletcher’s augmented Lagrangian, we propose an algorithm to minimize the penalized cost function which reaches <span>\\\\(\\\\varepsilon \\\\)</span>-approximate second-order critical points of the original optimization problem in at most <span>\\\\({\\\\mathcal {O}}(\\\\varepsilon ^{-3})\\\\)</span> iterations. This improves on current best theoretical bounds. Along the way, we show new properties of Fletcher’s augmented Lagrangian, which may be of independent interest.\\n</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02421-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02421-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们要解决的问题是在平滑相等约束条件下最小化平滑函数。在这些约束条件的规则性假设下,我们提出了一个近似一阶和二阶临界点的概念,它依赖于黎曼最优化的几何形式主义。利用被称为弗莱彻增量拉格朗日的平滑精确惩罚函数,我们提出了一种最小化惩罚成本函数的算法,该算法最多只需要迭代一次就能达到原始优化问题的近似二阶临界点({\mathcal {O}}(\varepsilon ^{-3}))。这改进了当前的最佳理论边界。同时,我们还展示了弗莱彻增强拉格朗日的新特性,这些特性可能会引起我们的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computing Second-Order Points Under Equality Constraints: Revisiting Fletcher’s Augmented Lagrangian

Computing Second-Order Points Under Equality Constraints: Revisiting Fletcher’s Augmented Lagrangian

We address the problem of minimizing a smooth function under smooth equality constraints. Under regularity assumptions on these constraints, we propose a notion of approximate first- and second-order critical point which relies on the geometric formalism of Riemannian optimization. Using a smooth exact penalty function known as Fletcher’s augmented Lagrangian, we propose an algorithm to minimize the penalized cost function which reaches \(\varepsilon \)-approximate second-order critical points of the original optimization problem in at most \({\mathcal {O}}(\varepsilon ^{-3})\) iterations. This improves on current best theoretical bounds. Along the way, we show new properties of Fletcher’s augmented Lagrangian, which may be of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信