极性、单极性、单极性和 (s, 1)- 极性在 Cographs 广义中的最小障碍

IF 0.6 4区 数学 Q3 MATHEMATICS
Fernando Esteban Contreras-Mendoza, César Hernández-Cruz
{"title":"极性、单极性、单极性和 (s, 1)- 极性在 Cographs 广义中的最小障碍","authors":"Fernando Esteban Contreras-Mendoza, César Hernández-Cruz","doi":"10.1007/s00373-024-02784-7","DOIUrl":null,"url":null,"abstract":"<p>It is known that every hereditary property can be characterized by finitely many minimal obstructions when restricted to either the class of cographs or the class of <span>\\(P_4\\)</span>-reducible graphs. In this work, we prove that the same is true when restricted to some other superclasses of cographs, including <span>\\(P_4\\)</span>-sparse and <span>\\(P_4\\)</span>-extendible graphs (both of which extend <span>\\(P_4\\)</span>-reducible graphs). We also present complete lists of <span>\\(P_4\\)</span>-sparse and <span>\\(P_4\\)</span>-extendible minimal obstructions for polarity, monopolarity, unipolarity, and (<i>s</i>, 1)-polarity, where <i>s</i> is a positive integer. In parallel to the case of <span>\\(P_4\\)</span>-reducible graphs, all the <span>\\(P_4\\)</span>-sparse minimal obstructions for these hereditary properties are cographs.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"9 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Obstructions for Polarity, Monopolarity, Unipolarity and (s, 1)-Polarity in Generalizations of Cographs\",\"authors\":\"Fernando Esteban Contreras-Mendoza, César Hernández-Cruz\",\"doi\":\"10.1007/s00373-024-02784-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that every hereditary property can be characterized by finitely many minimal obstructions when restricted to either the class of cographs or the class of <span>\\\\(P_4\\\\)</span>-reducible graphs. In this work, we prove that the same is true when restricted to some other superclasses of cographs, including <span>\\\\(P_4\\\\)</span>-sparse and <span>\\\\(P_4\\\\)</span>-extendible graphs (both of which extend <span>\\\\(P_4\\\\)</span>-reducible graphs). We also present complete lists of <span>\\\\(P_4\\\\)</span>-sparse and <span>\\\\(P_4\\\\)</span>-extendible minimal obstructions for polarity, monopolarity, unipolarity, and (<i>s</i>, 1)-polarity, where <i>s</i> is a positive integer. In parallel to the case of <span>\\\\(P_4\\\\)</span>-reducible graphs, all the <span>\\\\(P_4\\\\)</span>-sparse minimal obstructions for these hereditary properties are cographs.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02784-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02784-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,当局限于 cographs 类或\(P_4\)-reducible graphs 类时,每个遗传属性都可以用有限多个最小障碍来表征。在这项工作中,我们证明了当局限于其他一些超类的 cographs 时也是如此,包括 \(P_4\)-sparse 和 \(P_4\)-extendible graphs(两者都扩展了 \(P_4\)-reducible graphs)。我们还给出了关于极性、单极性、单极性和(s, 1)极性(其中 s 为正整数)的 \(P_4\)-sparse 和 \(P_4\)-extendible 最小障碍的完整列表。与 \(P_4\)-reducible graphs 的情况类似,这些遗传属性的所有 \(P_4\)-sparse minimal obstructions 都是 cographs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Minimal Obstructions for Polarity, Monopolarity, Unipolarity and (s, 1)-Polarity in Generalizations of Cographs

Minimal Obstructions for Polarity, Monopolarity, Unipolarity and (s, 1)-Polarity in Generalizations of Cographs

It is known that every hereditary property can be characterized by finitely many minimal obstructions when restricted to either the class of cographs or the class of \(P_4\)-reducible graphs. In this work, we prove that the same is true when restricted to some other superclasses of cographs, including \(P_4\)-sparse and \(P_4\)-extendible graphs (both of which extend \(P_4\)-reducible graphs). We also present complete lists of \(P_4\)-sparse and \(P_4\)-extendible minimal obstructions for polarity, monopolarity, unipolarity, and (s, 1)-polarity, where s is a positive integer. In parallel to the case of \(P_4\)-reducible graphs, all the \(P_4\)-sparse minimal obstructions for these hereditary properties are cographs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信