线性森林广义图兰数的稳定性

IF 0.6 4区 数学 Q3 MATHEMATICS
Yisai Xue, Yichong Liu, Liying Kang
{"title":"线性森林广义图兰数的稳定性","authors":"Yisai Xue, Yichong Liu, Liying Kang","doi":"10.1007/s00373-024-02781-w","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <i>T</i> and a family of graphs <span>\\({\\mathcal {F}}\\)</span>, the generalized Turán number of <span>\\({\\mathcal {F}}\\)</span> is the maximum number of copies of <i>T</i> in an <span>\\({\\mathcal {F}}\\)</span>-free graph on <i>n</i> vertices, denoted by <span>\\(ex(n,T,{\\mathcal {F}})\\)</span>. A linear forest is a forest whose connected components are all paths and isolated vertices. Let <span>\\({\\mathcal {L}}_{k}\\)</span> be the family of all linear forests of size <i>k</i> without isolated vertices. In this paper, we obtained the maximum possible number of <i>r</i>-cliques in <i>G</i>, where <i>G</i> is <span>\\({\\mathcal {L}}_{k}\\)</span>-free with minimum degree at least <i>d</i>. Furthermore, we give a stability version of the result. As an application of the stability version of the result, we obtain a clique version of the stability of the Erdős–Gallai Theorem on matchings.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"87 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Generalized Turán Number for Linear Forests\",\"authors\":\"Yisai Xue, Yichong Liu, Liying Kang\",\"doi\":\"10.1007/s00373-024-02781-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a graph <i>T</i> and a family of graphs <span>\\\\({\\\\mathcal {F}}\\\\)</span>, the generalized Turán number of <span>\\\\({\\\\mathcal {F}}\\\\)</span> is the maximum number of copies of <i>T</i> in an <span>\\\\({\\\\mathcal {F}}\\\\)</span>-free graph on <i>n</i> vertices, denoted by <span>\\\\(ex(n,T,{\\\\mathcal {F}})\\\\)</span>. A linear forest is a forest whose connected components are all paths and isolated vertices. Let <span>\\\\({\\\\mathcal {L}}_{k}\\\\)</span> be the family of all linear forests of size <i>k</i> without isolated vertices. In this paper, we obtained the maximum possible number of <i>r</i>-cliques in <i>G</i>, where <i>G</i> is <span>\\\\({\\\\mathcal {L}}_{k}\\\\)</span>-free with minimum degree at least <i>d</i>. Furthermore, we give a stability version of the result. As an application of the stability version of the result, we obtain a clique version of the stability of the Erdős–Gallai Theorem on matchings.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02781-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02781-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图 T 和一个图族 \({\mathcal{F}}\),\({\mathcal{F}}\)的广义图兰数就是在 n 个顶点上的无\({\mathcal{F}}\)图中 T 的最大副本数,用 \(ex(n,T,{\mathcal{F}})\)表示。线性森林是指其连通部分都是路径和孤立顶点的森林。设 \({\mathcal {L}}_{k}\) 是所有大小为 k 且没有孤立顶点的线性森林的族。在本文中,我们得到了 G 中 r-cliques 的最大可能数目,其中 G 是 \({\mathcal {L}}_{k}\)-free的,且最小度至少为 d。作为该结果稳定性版本的应用,我们得到了关于匹配的厄多斯-加莱定理稳定性的小块版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability of Generalized Turán Number for Linear Forests

Stability of Generalized Turán Number for Linear Forests

Given a graph T and a family of graphs \({\mathcal {F}}\), the generalized Turán number of \({\mathcal {F}}\) is the maximum number of copies of T in an \({\mathcal {F}}\)-free graph on n vertices, denoted by \(ex(n,T,{\mathcal {F}})\). A linear forest is a forest whose connected components are all paths and isolated vertices. Let \({\mathcal {L}}_{k}\) be the family of all linear forests of size k without isolated vertices. In this paper, we obtained the maximum possible number of r-cliques in G, where G is \({\mathcal {L}}_{k}\)-free with minimum degree at least d. Furthermore, we give a stability version of the result. As an application of the stability version of the result, we obtain a clique version of the stability of the Erdős–Gallai Theorem on matchings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信