论小型严格诺伊迈尔图的存在

Pub Date : 2024-04-08 DOI:10.1007/s00373-024-02779-4
Aida Abiad, Maarten De Boeck, Sjanne Zeijlemaker
{"title":"论小型严格诺伊迈尔图的存在","authors":"Aida Abiad, Maarten De Boeck, Sjanne Zeijlemaker","doi":"10.1007/s00373-024-02779-4","DOIUrl":null,"url":null,"abstract":"<p>A Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this work, we prove several results on the existence of small strictly Neumaier graphs. In particular, we present a theoretical proof of the uniqueness of the smallest strictly Neumaier graph with parameters (16, 9, 4; 2, 4), we establish the existence of a strictly Neumaier graph with parameters (25, 12, 5; 2, 5), and we disprove the existence of strictly Neumaier graphs with parameters (25, 16, 9; 3, 5), (28, 18, 11; 4, 7), (33, 24, 17; 6, 9), (35, 2212; 3, 5), (40, 30, 22; 7, 10) and (55, 34, 18; 3, 5). Our proofs use combinatorial techniques and a novel application of integer programming methods.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Existence of Small Strictly Neumaier Graphs\",\"authors\":\"Aida Abiad, Maarten De Boeck, Sjanne Zeijlemaker\",\"doi\":\"10.1007/s00373-024-02779-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this work, we prove several results on the existence of small strictly Neumaier graphs. In particular, we present a theoretical proof of the uniqueness of the smallest strictly Neumaier graph with parameters (16, 9, 4; 2, 4), we establish the existence of a strictly Neumaier graph with parameters (25, 12, 5; 2, 5), and we disprove the existence of strictly Neumaier graphs with parameters (25, 16, 9; 3, 5), (28, 18, 11; 4, 7), (33, 24, 17; 6, 9), (35, 2212; 3, 5), (40, 30, 22; 7, 10) and (55, 34, 18; 3, 5). Our proofs use combinatorial techniques and a novel application of integer programming methods.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02779-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02779-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Neumaier 图是包含一个规则小块的非完整边规则图。在这项工作中,我们证明了关于小型严格 Neumaier 图存在性的几个结果。特别是,我们从理论上证明了参数为 (16, 9, 4; 2, 4) 的最小严格 Neumaier 图的唯一性;我们建立了参数为 (25, 12, 5. 2, 5) 的严格 Neumaier 图的存在性;我们反驳了参数为 (16, 9, 4; 2, 4) 的最小严格 Neumaier 图的唯一性;2,5),并反证了参数为 (25, 16, 9; 3, 5)、(28, 18, 11; 4, 7)、(33, 24, 17; 6, 9)、(35, 2212; 3, 5)、(40, 30, 22; 7, 10) 和 (55, 34, 18; 3, 5) 的严格诺伊迈尔图的存在性。我们的证明使用了组合技术和新颖的整数编程方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Existence of Small Strictly Neumaier Graphs

分享
查看原文
On the Existence of Small Strictly Neumaier Graphs

A Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this work, we prove several results on the existence of small strictly Neumaier graphs. In particular, we present a theoretical proof of the uniqueness of the smallest strictly Neumaier graph with parameters (16, 9, 4; 2, 4), we establish the existence of a strictly Neumaier graph with parameters (25, 12, 5; 2, 5), and we disprove the existence of strictly Neumaier graphs with parameters (25, 16, 9; 3, 5), (28, 18, 11; 4, 7), (33, 24, 17; 6, 9), (35, 2212; 3, 5), (40, 30, 22; 7, 10) and (55, 34, 18; 3, 5). Our proofs use combinatorial techniques and a novel application of integer programming methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信