对子问题采用按比例停止标准的有保障的扩增拉格朗日算法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
E. G. Birgin, G. Haeser, J. M. Martínez
{"title":"对子问题采用按比例停止标准的有保障的扩增拉格朗日算法","authors":"E. G. Birgin, G. Haeser, J. M. Martínez","doi":"10.1007/s10589-024-00572-w","DOIUrl":null,"url":null,"abstract":"<p>At each iteration of the safeguarded augmented Lagrangian algorithm Algencan, a bound-constrained subproblem consisting of the minimization of the Powell–Hestenes–Rockafellar augmented Lagrangian function is considered, for which an approximate minimizer with tolerance tending to zero is sought. More precisely, a point that satisfies a subproblem first-order necessary optimality condition with tolerance tending to zero is required. In this work, based on the success of scaled stopping criteria in constrained optimization, we propose a scaled stopping criterion for the subproblems of Algencan. The scaling is done with the maximum absolute value of the first-order Lagrange multipliers approximation, whenever it is larger than one. The difference between the convergence theory of the scaled and non-scaled versions of Algencan is discussed and extensive numerical experiments are provided.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems\",\"authors\":\"E. G. Birgin, G. Haeser, J. M. Martínez\",\"doi\":\"10.1007/s10589-024-00572-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>At each iteration of the safeguarded augmented Lagrangian algorithm Algencan, a bound-constrained subproblem consisting of the minimization of the Powell–Hestenes–Rockafellar augmented Lagrangian function is considered, for which an approximate minimizer with tolerance tending to zero is sought. More precisely, a point that satisfies a subproblem first-order necessary optimality condition with tolerance tending to zero is required. In this work, based on the success of scaled stopping criteria in constrained optimization, we propose a scaled stopping criterion for the subproblems of Algencan. The scaling is done with the maximum absolute value of the first-order Lagrange multipliers approximation, whenever it is larger than one. The difference between the convergence theory of the scaled and non-scaled versions of Algencan is discussed and extensive numerical experiments are provided.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00572-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00572-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在保障性扩增拉格朗日算法 Algencan 的每次迭代中,都要考虑一个有约束的子问题,即 Powell-Hestenes-Rockafellar 扩增拉格朗日函数的最小化问题,并为该问题寻找一个容差趋于零的近似最小值。更确切地说,需要一个满足子问题一阶必要最优条件且容差趋于零的点。在这项工作中,基于约束优化中按比例停止准则的成功经验,我们为 Algencan 的子问题提出了一种按比例停止准则。只要一阶拉格朗日乘数近似值的最大绝对值大于 1,就会按比例停止。本文讨论了 Algencan 的缩放和非缩放版本的收敛理论之间的差异,并提供了大量的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems

Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems

At each iteration of the safeguarded augmented Lagrangian algorithm Algencan, a bound-constrained subproblem consisting of the minimization of the Powell–Hestenes–Rockafellar augmented Lagrangian function is considered, for which an approximate minimizer with tolerance tending to zero is sought. More precisely, a point that satisfies a subproblem first-order necessary optimality condition with tolerance tending to zero is required. In this work, based on the success of scaled stopping criteria in constrained optimization, we propose a scaled stopping criterion for the subproblems of Algencan. The scaling is done with the maximum absolute value of the first-order Lagrange multipliers approximation, whenever it is larger than one. The difference between the convergence theory of the scaled and non-scaled versions of Algencan is discussed and extensive numerical experiments are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信