Luwen Zhuang, Hao Chen, Ping Yan, Xingmei Liang, Wenceslau G. Teixera, Martinus Th. van Genuchten, Kairong Lin
{"title":"中国亚热带人为(紫色)土壤的非饱和水力特性测量结果","authors":"Luwen Zhuang, Hao Chen, Ping Yan, Xingmei Liang, Wenceslau G. Teixera, Martinus Th. van Genuchten, Kairong Lin","doi":"10.1002/vzj2.20334","DOIUrl":null,"url":null,"abstract":"Many anthropogenic soils, often referred to as red bed or purple soils, are distributed in various areas of southern China. Purple soils typically are highly weathered and often lead to natural and engineering hazards because of their relatively poor water retention properties. Knowledge of the unsaturated soil hydraulic properties of purple soils is crucial for their optimal management and various assessment studies. In this work, the hydraulic properties of purple soils from southern China were measured in the laboratory over the full moisture range using a combination of evaporation (HYPROP) and psychrometer (WP4C) approaches. Measured data were analyzed in terms of four different unimodal and bimodal soil hydraulic models. The measurements and analyses showed that bimodality was not overly significant for most samples. The good fit of the Peters–Durner–Iden models furthermore suggested that corner and film flows were important under relative dry conditions. Existing soil pedotransfer functions were found to provide a fairly close match for the slope of water retention curves with the exception of near saturated water contents and the saturated conductivity. To the best of our knowledge, this is the first time that unsaturated hydraulic data of purple soils are provided over the full moisture range.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"91 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsaturated hydraulic property measurements of subtropical anthropogenic (purple) soils in China\",\"authors\":\"Luwen Zhuang, Hao Chen, Ping Yan, Xingmei Liang, Wenceslau G. Teixera, Martinus Th. van Genuchten, Kairong Lin\",\"doi\":\"10.1002/vzj2.20334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many anthropogenic soils, often referred to as red bed or purple soils, are distributed in various areas of southern China. Purple soils typically are highly weathered and often lead to natural and engineering hazards because of their relatively poor water retention properties. Knowledge of the unsaturated soil hydraulic properties of purple soils is crucial for their optimal management and various assessment studies. In this work, the hydraulic properties of purple soils from southern China were measured in the laboratory over the full moisture range using a combination of evaporation (HYPROP) and psychrometer (WP4C) approaches. Measured data were analyzed in terms of four different unimodal and bimodal soil hydraulic models. The measurements and analyses showed that bimodality was not overly significant for most samples. The good fit of the Peters–Durner–Iden models furthermore suggested that corner and film flows were important under relative dry conditions. Existing soil pedotransfer functions were found to provide a fairly close match for the slope of water retention curves with the exception of near saturated water contents and the saturated conductivity. To the best of our knowledge, this is the first time that unsaturated hydraulic data of purple soils are provided over the full moisture range.\",\"PeriodicalId\":23594,\"journal\":{\"name\":\"Vadose Zone Journal\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vadose Zone Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20334\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20334","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Unsaturated hydraulic property measurements of subtropical anthropogenic (purple) soils in China
Many anthropogenic soils, often referred to as red bed or purple soils, are distributed in various areas of southern China. Purple soils typically are highly weathered and often lead to natural and engineering hazards because of their relatively poor water retention properties. Knowledge of the unsaturated soil hydraulic properties of purple soils is crucial for their optimal management and various assessment studies. In this work, the hydraulic properties of purple soils from southern China were measured in the laboratory over the full moisture range using a combination of evaporation (HYPROP) and psychrometer (WP4C) approaches. Measured data were analyzed in terms of four different unimodal and bimodal soil hydraulic models. The measurements and analyses showed that bimodality was not overly significant for most samples. The good fit of the Peters–Durner–Iden models furthermore suggested that corner and film flows were important under relative dry conditions. Existing soil pedotransfer functions were found to provide a fairly close match for the slope of water retention curves with the exception of near saturated water contents and the saturated conductivity. To the best of our knowledge, this is the first time that unsaturated hydraulic data of purple soils are provided over the full moisture range.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.