近 $$G_2$$ 和近 Kähler 6-manifolds 的贝蒂数与韦尔曲率边界

Pub Date : 2024-04-12 DOI:10.1007/s10711-024-00920-4
Anton Iliashenko
{"title":"近 $$G_2$$ 和近 Kähler 6-manifolds 的贝蒂数与韦尔曲率边界","authors":"Anton Iliashenko","doi":"10.1007/s10711-024-00920-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper we use the Weitzenböck formulas to get information about the Betti numbers of compact nearly <span>\\(G_2\\)</span> and compact nearly Kähler 6-manifolds. First, we establish estimates on two curvature-type self adjoint operators on particular spaces assuming bounds on the sectional curvature. Then using the Weitzenböck formulas on harmonic forms, we get results of the form: if certain lower bounds hold for these curvature operators then certain Betti numbers are zero. Finally, we combine both steps above to get sufficient conditions of vanishing of certain Betti numbers based on the bounds on the sectional curvature.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Betti numbers of nearly $$G_2$$ and nearly Kähler 6-manifolds with Weyl curvature bounds\",\"authors\":\"Anton Iliashenko\",\"doi\":\"10.1007/s10711-024-00920-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we use the Weitzenböck formulas to get information about the Betti numbers of compact nearly <span>\\\\(G_2\\\\)</span> and compact nearly Kähler 6-manifolds. First, we establish estimates on two curvature-type self adjoint operators on particular spaces assuming bounds on the sectional curvature. Then using the Weitzenböck formulas on harmonic forms, we get results of the form: if certain lower bounds hold for these curvature operators then certain Betti numbers are zero. Finally, we combine both steps above to get sufficient conditions of vanishing of certain Betti numbers based on the bounds on the sectional curvature.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00920-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00920-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用魏岑伯克公式来获取关于紧凑近\(G_2\)和紧凑近凯勒6-manifolds的贝蒂数的信息。首先,我们假设截面曲率的边界,建立了特定空间上两个曲率型自邻接算子的估计值。然后,我们利用谐波形式的魏岑伯克式,得到如下结果:如果这些曲率算子的某些下界成立,那么某些贝蒂数为零。最后,我们将上述两个步骤结合起来,根据截面曲率的边界得到某些贝蒂数消失的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Betti numbers of nearly $$G_2$$ and nearly Kähler 6-manifolds with Weyl curvature bounds

In this paper we use the Weitzenböck formulas to get information about the Betti numbers of compact nearly \(G_2\) and compact nearly Kähler 6-manifolds. First, we establish estimates on two curvature-type self adjoint operators on particular spaces assuming bounds on the sectional curvature. Then using the Weitzenböck formulas on harmonic forms, we get results of the form: if certain lower bounds hold for these curvature operators then certain Betti numbers are zero. Finally, we combine both steps above to get sufficient conditions of vanishing of certain Betti numbers based on the bounds on the sectional curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信