{"title":"关于辐射公式及其与瓦瑟斯坦切分距离关系的说明","authors":"Gennaro Auricchio","doi":"10.1007/s00010-024-01049-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we show that the squared Wasserstein distance can be expressed as the average over the sphere of one dimensional Wasserstein distances. We name this new expression for the Wasserstein Distance <i>Radiant Formula</i>. Using this formula, we are able to highlight new connections between the Wasserstein distances and the Sliced Wasserstein distance, an alternative Wasserstein-like distance that is cheaper to compute.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01049-1.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on the Radiant formula and its relations to the sliced Wasserstein distance\",\"authors\":\"Gennaro Auricchio\",\"doi\":\"10.1007/s00010-024-01049-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note, we show that the squared Wasserstein distance can be expressed as the average over the sphere of one dimensional Wasserstein distances. We name this new expression for the Wasserstein Distance <i>Radiant Formula</i>. Using this formula, we are able to highlight new connections between the Wasserstein distances and the Sliced Wasserstein distance, an alternative Wasserstein-like distance that is cheaper to compute.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01049-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01049-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01049-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A note on the Radiant formula and its relations to the sliced Wasserstein distance
In this note, we show that the squared Wasserstein distance can be expressed as the average over the sphere of one dimensional Wasserstein distances. We name this new expression for the Wasserstein Distance Radiant Formula. Using this formula, we are able to highlight new connections between the Wasserstein distances and the Sliced Wasserstein distance, an alternative Wasserstein-like distance that is cheaper to compute.