Dmytro Karvatskyi, Aniceto Murillo, Antonio Viruel
{"title":"广义多重计量序列的成就集","authors":"Dmytro Karvatskyi, Aniceto Murillo, Antonio Viruel","doi":"10.1007/s00025-024-02158-8","DOIUrl":null,"url":null,"abstract":"<p>We study the topology of all possible subsums of the <i>generalized multigeometric series</i> <span>\\(k_1f(x)+k_2f(x)+\\dots +k_mf(x)+\\dots + k_1f(x^n)+\\dots +k_mf(x^n)+\\dots ,\\)</span> where <span>\\(k_1, k_2, \\dots , k_m\\)</span> are fixed positive real numbers and <i>f</i> runs along a certain class of non-negative functions on the unit interval. We detect particular regions of this interval for which this achievement set is, respectively, a compact interval, a Cantor set and a Cantorval.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"130 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Achievement Set of Generalized Multigeometric Sequences\",\"authors\":\"Dmytro Karvatskyi, Aniceto Murillo, Antonio Viruel\",\"doi\":\"10.1007/s00025-024-02158-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the topology of all possible subsums of the <i>generalized multigeometric series</i> <span>\\\\(k_1f(x)+k_2f(x)+\\\\dots +k_mf(x)+\\\\dots + k_1f(x^n)+\\\\dots +k_mf(x^n)+\\\\dots ,\\\\)</span> where <span>\\\\(k_1, k_2, \\\\dots , k_m\\\\)</span> are fixed positive real numbers and <i>f</i> runs along a certain class of non-negative functions on the unit interval. We detect particular regions of this interval for which this achievement set is, respectively, a compact interval, a Cantor set and a Cantorval.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02158-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02158-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Achievement Set of Generalized Multigeometric Sequences
We study the topology of all possible subsums of the generalized multigeometric series\(k_1f(x)+k_2f(x)+\dots +k_mf(x)+\dots + k_1f(x^n)+\dots +k_mf(x^n)+\dots ,\) where \(k_1, k_2, \dots , k_m\) are fixed positive real numbers and f runs along a certain class of non-negative functions on the unit interval. We detect particular regions of this interval for which this achievement set is, respectively, a compact interval, a Cantor set and a Cantorval.
期刊介绍:
Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.