{"title":"度量空间的拓扑方面","authors":"Daisuke Kazukawa, Hiroki Nakajima, Takashi Shioya","doi":"10.1007/s10711-024-00921-3","DOIUrl":null,"url":null,"abstract":"<p>Gromov introduced two distance functions, the box distance and the observable distance, on the space of isomorphism classes of metric measure spaces and developed the convergence theory of metric measure spaces. We investigate several topological properties on the space equipped with these distance functions toward a deep understanding of convergence theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological aspects of the space of metric measure spaces\",\"authors\":\"Daisuke Kazukawa, Hiroki Nakajima, Takashi Shioya\",\"doi\":\"10.1007/s10711-024-00921-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gromov introduced two distance functions, the box distance and the observable distance, on the space of isomorphism classes of metric measure spaces and developed the convergence theory of metric measure spaces. We investigate several topological properties on the space equipped with these distance functions toward a deep understanding of convergence theory.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00921-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00921-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topological aspects of the space of metric measure spaces
Gromov introduced two distance functions, the box distance and the observable distance, on the space of isomorphism classes of metric measure spaces and developed the convergence theory of metric measure spaces. We investigate several topological properties on the space equipped with these distance functions toward a deep understanding of convergence theory.