{"title":"论 $${text {SL}}_2({\\mathbb {C}})$$ 的紧凑商的泰希米勒堆栈","authors":"Théo Jamin","doi":"10.1007/s10711-024-00916-0","DOIUrl":null,"url":null,"abstract":"<p>This article aims to pursue and generalize, by using the global point of view offered by the stacks, the local study made by <span>Ghys</span> (J für die reine und angewandte Mathematik 468:113–138, 1995) concerning the deformations of complex structures of compact quotients of <span>\\({\\text {SL}}_2({\\mathbb {C}})\\)</span>. In his article, <span>Ghys</span> showed that the analytic germ of the representation variety <span>\\({\\mathcal {R}}(\\varGamma ):={\\text {Hom}}(\\varGamma ,{\\text {SL}}_2({\\mathbb {C}}))\\)</span> of <span>\\(\\varGamma \\)</span> in <span>\\({\\text {SL}}_2({\\mathbb {C}})\\)</span>, pointed at the trivial morphism, determines the Kuranishi space of <span>\\({\\text {SL}}_2({\\mathbb {C}})/\\varGamma \\)</span>. In this note, we show that the tautological family above a Zariski analytic open subset <i>V</i> in <span>\\({\\mathcal {R}}(\\varGamma )\\)</span> remains complete. Moreover, the computation of the isotropy group of a complex structure in Teichmüller space, allows us to affirm that the quotient stack <span>\\([V/{\\text {SL}}_2({\\mathbb {C}})]\\)</span> is an open substack of the Teichmüller stack of <span>\\({\\text {SL}}_2({\\mathbb {C}})/\\varGamma \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Teichmüller stack of compact quotients of $${\\\\text {SL}}_2({\\\\mathbb {C}})$$\",\"authors\":\"Théo Jamin\",\"doi\":\"10.1007/s10711-024-00916-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article aims to pursue and generalize, by using the global point of view offered by the stacks, the local study made by <span>Ghys</span> (J für die reine und angewandte Mathematik 468:113–138, 1995) concerning the deformations of complex structures of compact quotients of <span>\\\\({\\\\text {SL}}_2({\\\\mathbb {C}})\\\\)</span>. In his article, <span>Ghys</span> showed that the analytic germ of the representation variety <span>\\\\({\\\\mathcal {R}}(\\\\varGamma ):={\\\\text {Hom}}(\\\\varGamma ,{\\\\text {SL}}_2({\\\\mathbb {C}}))\\\\)</span> of <span>\\\\(\\\\varGamma \\\\)</span> in <span>\\\\({\\\\text {SL}}_2({\\\\mathbb {C}})\\\\)</span>, pointed at the trivial morphism, determines the Kuranishi space of <span>\\\\({\\\\text {SL}}_2({\\\\mathbb {C}})/\\\\varGamma \\\\)</span>. In this note, we show that the tautological family above a Zariski analytic open subset <i>V</i> in <span>\\\\({\\\\mathcal {R}}(\\\\varGamma )\\\\)</span> remains complete. Moreover, the computation of the isotropy group of a complex structure in Teichmüller space, allows us to affirm that the quotient stack <span>\\\\([V/{\\\\text {SL}}_2({\\\\mathbb {C}})]\\\\)</span> is an open substack of the Teichmüller stack of <span>\\\\({\\\\text {SL}}_2({\\\\mathbb {C}})/\\\\varGamma \\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00916-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00916-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文旨在利用堆栈提供的全局视角,继续并推广 Ghys (J für die reine und angewandte Mathematik 468:113-138, 1995) 关于 \({\text {SL}}_2({\mathbb {C}})\ 的紧凑商的复结构变形的局部研究。)在他的文章中,Ghys 证明了表示元 \({\mathcal {R}}(\varGamma ):={text {Hom}}(\varGamma ,{\text {SL}}_2({\mathbb {C}}))\) of \(\varGamma \) in \({\text {SL}}_2({\mathbb {C}})\)、的库兰西空间。在本注释中,我们证明了在\({\mathcal {R}}(\varGamma )\) 中的扎里斯基解析开子集 V 上面的同调族仍然是完整的。此外,通过计算泰希米勒空间中复结构的各向同性群,我们可以肯定商堆栈 \([V/{\text {SL}}_2({\mathbb {C}})]\) 是 \({\text {SL}}_2({\mathbb {C}})/\varGamma \) 的泰希米勒堆栈的开放子堆栈。
On the Teichmüller stack of compact quotients of $${\text {SL}}_2({\mathbb {C}})$$
This article aims to pursue and generalize, by using the global point of view offered by the stacks, the local study made by Ghys (J für die reine und angewandte Mathematik 468:113–138, 1995) concerning the deformations of complex structures of compact quotients of \({\text {SL}}_2({\mathbb {C}})\). In his article, Ghys showed that the analytic germ of the representation variety \({\mathcal {R}}(\varGamma ):={\text {Hom}}(\varGamma ,{\text {SL}}_2({\mathbb {C}}))\) of \(\varGamma \) in \({\text {SL}}_2({\mathbb {C}})\), pointed at the trivial morphism, determines the Kuranishi space of \({\text {SL}}_2({\mathbb {C}})/\varGamma \). In this note, we show that the tautological family above a Zariski analytic open subset V in \({\mathcal {R}}(\varGamma )\) remains complete. Moreover, the computation of the isotropy group of a complex structure in Teichmüller space, allows us to affirm that the quotient stack \([V/{\text {SL}}_2({\mathbb {C}})]\) is an open substack of the Teichmüller stack of \({\text {SL}}_2({\mathbb {C}})/\varGamma \).