论 $${text {SL}}_2({\mathbb {C}})$$ 的紧凑商的泰希米勒堆栈

Pub Date : 2024-04-04 DOI:10.1007/s10711-024-00916-0
Théo Jamin
{"title":"论 $${text {SL}}_2({\\mathbb {C}})$$ 的紧凑商的泰希米勒堆栈","authors":"Théo Jamin","doi":"10.1007/s10711-024-00916-0","DOIUrl":null,"url":null,"abstract":"<p>This article aims to pursue and generalize, by using the global point of view offered by the stacks, the local study made by <span>Ghys</span> (J für die reine und angewandte Mathematik 468:113–138, 1995) concerning the deformations of complex structures of compact quotients of <span>\\({\\text {SL}}_2({\\mathbb {C}})\\)</span>. In his article, <span>Ghys</span> showed that the analytic germ of the representation variety <span>\\({\\mathcal {R}}(\\varGamma ):={\\text {Hom}}(\\varGamma ,{\\text {SL}}_2({\\mathbb {C}}))\\)</span> of <span>\\(\\varGamma \\)</span> in <span>\\({\\text {SL}}_2({\\mathbb {C}})\\)</span>, pointed at the trivial morphism, determines the Kuranishi space of <span>\\({\\text {SL}}_2({\\mathbb {C}})/\\varGamma \\)</span>. In this note, we show that the tautological family above a Zariski analytic open subset <i>V</i> in <span>\\({\\mathcal {R}}(\\varGamma )\\)</span> remains complete. Moreover, the computation of the isotropy group of a complex structure in Teichmüller space, allows us to affirm that the quotient stack <span>\\([V/{\\text {SL}}_2({\\mathbb {C}})]\\)</span> is an open substack of the Teichmüller stack of <span>\\({\\text {SL}}_2({\\mathbb {C}})/\\varGamma \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Teichmüller stack of compact quotients of $${\\\\text {SL}}_2({\\\\mathbb {C}})$$\",\"authors\":\"Théo Jamin\",\"doi\":\"10.1007/s10711-024-00916-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article aims to pursue and generalize, by using the global point of view offered by the stacks, the local study made by <span>Ghys</span> (J für die reine und angewandte Mathematik 468:113–138, 1995) concerning the deformations of complex structures of compact quotients of <span>\\\\({\\\\text {SL}}_2({\\\\mathbb {C}})\\\\)</span>. In his article, <span>Ghys</span> showed that the analytic germ of the representation variety <span>\\\\({\\\\mathcal {R}}(\\\\varGamma ):={\\\\text {Hom}}(\\\\varGamma ,{\\\\text {SL}}_2({\\\\mathbb {C}}))\\\\)</span> of <span>\\\\(\\\\varGamma \\\\)</span> in <span>\\\\({\\\\text {SL}}_2({\\\\mathbb {C}})\\\\)</span>, pointed at the trivial morphism, determines the Kuranishi space of <span>\\\\({\\\\text {SL}}_2({\\\\mathbb {C}})/\\\\varGamma \\\\)</span>. In this note, we show that the tautological family above a Zariski analytic open subset <i>V</i> in <span>\\\\({\\\\mathcal {R}}(\\\\varGamma )\\\\)</span> remains complete. Moreover, the computation of the isotropy group of a complex structure in Teichmüller space, allows us to affirm that the quotient stack <span>\\\\([V/{\\\\text {SL}}_2({\\\\mathbb {C}})]\\\\)</span> is an open substack of the Teichmüller stack of <span>\\\\({\\\\text {SL}}_2({\\\\mathbb {C}})/\\\\varGamma \\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00916-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00916-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在利用堆栈提供的全局视角,继续并推广 Ghys (J für die reine und angewandte Mathematik 468:113-138, 1995) 关于 \({\text {SL}}_2({\mathbb {C}})\ 的紧凑商的复结构变形的局部研究。)在他的文章中,Ghys 证明了表示元 \({\mathcal {R}}(\varGamma ):={text {Hom}}(\varGamma ,{\text {SL}}_2({\mathbb {C}}))\) of \(\varGamma \) in \({\text {SL}}_2({\mathbb {C}})\)、的库兰西空间。在本注释中,我们证明了在\({\mathcal {R}}(\varGamma )\) 中的扎里斯基解析开子集 V 上面的同调族仍然是完整的。此外,通过计算泰希米勒空间中复结构的各向同性群,我们可以肯定商堆栈 \([V/{\text {SL}}_2({\mathbb {C}})]\) 是 \({\text {SL}}_2({\mathbb {C}})/\varGamma \) 的泰希米勒堆栈的开放子堆栈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Teichmüller stack of compact quotients of $${\text {SL}}_2({\mathbb {C}})$$

This article aims to pursue and generalize, by using the global point of view offered by the stacks, the local study made by Ghys (J für die reine und angewandte Mathematik 468:113–138, 1995) concerning the deformations of complex structures of compact quotients of \({\text {SL}}_2({\mathbb {C}})\). In his article, Ghys showed that the analytic germ of the representation variety \({\mathcal {R}}(\varGamma ):={\text {Hom}}(\varGamma ,{\text {SL}}_2({\mathbb {C}}))\) of \(\varGamma \) in \({\text {SL}}_2({\mathbb {C}})\), pointed at the trivial morphism, determines the Kuranishi space of \({\text {SL}}_2({\mathbb {C}})/\varGamma \). In this note, we show that the tautological family above a Zariski analytic open subset V in \({\mathcal {R}}(\varGamma )\) remains complete. Moreover, the computation of the isotropy group of a complex structure in Teichmüller space, allows us to affirm that the quotient stack \([V/{\text {SL}}_2({\mathbb {C}})]\) is an open substack of the Teichmüller stack of \({\text {SL}}_2({\mathbb {C}})/\varGamma \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信