关于几类乘法函数

Pub Date : 2024-04-09 DOI:10.1007/s00010-024-01053-5
Pentti Haukkanen
{"title":"关于几类乘法函数","authors":"Pentti Haukkanen","doi":"10.1007/s00010-024-01053-5","DOIUrl":null,"url":null,"abstract":"<p>An arithmetical function <i>f</i> is multiplicative if <span>\\(f(1)=1\\)</span> and <span>\\(f(mn)=f(m)f(n)\\)</span> whenever <i>m</i> and <i>n</i> are coprime. We study connections between certain subclasses of multiplicative functions, such as strongly multiplicative functions, over-multiplicative functions and totients. It appears, among others, that the over-multiplicative functions are exactly same as the totients and the strongly multiplicative functions are exactly same as the so-called level totients. All these functions satisfy nice arithmetical identities which are recursive in character.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some classes of multiplicative functions\",\"authors\":\"Pentti Haukkanen\",\"doi\":\"10.1007/s00010-024-01053-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An arithmetical function <i>f</i> is multiplicative if <span>\\\\(f(1)=1\\\\)</span> and <span>\\\\(f(mn)=f(m)f(n)\\\\)</span> whenever <i>m</i> and <i>n</i> are coprime. We study connections between certain subclasses of multiplicative functions, such as strongly multiplicative functions, over-multiplicative functions and totients. It appears, among others, that the over-multiplicative functions are exactly same as the totients and the strongly multiplicative functions are exactly same as the so-called level totients. All these functions satisfy nice arithmetical identities which are recursive in character.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01053-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01053-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当 m 和 n 是同素数时,如果 \(f(1)=1\) 和 \(f(mn)=f(m)f(n)\) 是乘法函数,则算术函数 f 是乘法函数。我们研究了乘法函数的某些子类之间的联系,如强乘法函数、超乘法函数和 totients。除其他外,超乘法函数与图腾完全相同,强乘法函数与所谓的级图腾完全相同。所有这些函数都满足具有递归性质的算术等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On some classes of multiplicative functions

An arithmetical function f is multiplicative if \(f(1)=1\) and \(f(mn)=f(m)f(n)\) whenever m and n are coprime. We study connections between certain subclasses of multiplicative functions, such as strongly multiplicative functions, over-multiplicative functions and totients. It appears, among others, that the over-multiplicative functions are exactly same as the totients and the strongly multiplicative functions are exactly same as the so-called level totients. All these functions satisfy nice arithmetical identities which are recursive in character.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信