高阶德尔佩佐曲面的尼尔森实现问题

Pub Date : 2024-04-08 DOI:10.1007/s10711-024-00912-4
Seraphina Eun Bi Lee
{"title":"高阶德尔佩佐曲面的尼尔森实现问题","authors":"Seraphina Eun Bi Lee","doi":"10.1007/s10711-024-00912-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>M</i> be a smooth 4-manifold underlying some del Pezzo surface of degree <span>\\(d \\ge 6\\)</span>. We consider the smooth Nielsen realization problem for <i>M</i>: which finite subgroups of <span>\\({{\\,\\textrm{Mod}\\,}}(M) = \\pi _0({{\\,\\textrm{Homeo}\\,}}^+(M))\\)</span> have lifts to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M) \\le {{\\,\\textrm{Homeo}\\,}}^+(M)\\)</span> under the quotient map <span>\\(\\pi : {{\\,\\textrm{Homeo}\\,}}^+(M) \\rightarrow {{\\,\\textrm{Mod}\\,}}(M)\\)</span>? We give a complete classification of such finite subgroups of <span>\\({{\\,\\textrm{Mod}\\,}}(M)\\)</span> for <span>\\(d \\ge 7\\)</span> and a partial answer for <span>\\(d = 6\\)</span>. For the cases <span>\\(d \\ge 8\\)</span>, the quotient map <span>\\(\\pi \\)</span> admits a section with image contained in <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span>. For the case <span>\\(d = 7\\)</span>, we show that all finite order elements of <span>\\({{\\,\\textrm{Mod}\\,}}(M)\\)</span> have lifts to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span>, but there are finite subgroups of <span>\\({{\\,\\textrm{Mod}\\,}}(M)\\)</span> that do not lift to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span>. We prove that the condition of whether a finite subgroup <span>\\(G \\le {{\\,\\textrm{Mod}\\,}}(M)\\)</span> lifts to <span>\\({{\\,\\textrm{Diff}\\,}}^+(M)\\)</span> is equivalent to the existence of a certain equivariant connected sum realizing <i>G</i>. For the case <span>\\(d = 6\\)</span>, we show this equivalence for all maximal finite subgroups <span>\\(G \\le {{\\,\\textrm{Mod}\\,}}(M)\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Nielsen realization problem for high degree del Pezzo surfaces\",\"authors\":\"Seraphina Eun Bi Lee\",\"doi\":\"10.1007/s10711-024-00912-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>M</i> be a smooth 4-manifold underlying some del Pezzo surface of degree <span>\\\\(d \\\\ge 6\\\\)</span>. We consider the smooth Nielsen realization problem for <i>M</i>: which finite subgroups of <span>\\\\({{\\\\,\\\\textrm{Mod}\\\\,}}(M) = \\\\pi _0({{\\\\,\\\\textrm{Homeo}\\\\,}}^+(M))\\\\)</span> have lifts to <span>\\\\({{\\\\,\\\\textrm{Diff}\\\\,}}^+(M) \\\\le {{\\\\,\\\\textrm{Homeo}\\\\,}}^+(M)\\\\)</span> under the quotient map <span>\\\\(\\\\pi : {{\\\\,\\\\textrm{Homeo}\\\\,}}^+(M) \\\\rightarrow {{\\\\,\\\\textrm{Mod}\\\\,}}(M)\\\\)</span>? We give a complete classification of such finite subgroups of <span>\\\\({{\\\\,\\\\textrm{Mod}\\\\,}}(M)\\\\)</span> for <span>\\\\(d \\\\ge 7\\\\)</span> and a partial answer for <span>\\\\(d = 6\\\\)</span>. For the cases <span>\\\\(d \\\\ge 8\\\\)</span>, the quotient map <span>\\\\(\\\\pi \\\\)</span> admits a section with image contained in <span>\\\\({{\\\\,\\\\textrm{Diff}\\\\,}}^+(M)\\\\)</span>. For the case <span>\\\\(d = 7\\\\)</span>, we show that all finite order elements of <span>\\\\({{\\\\,\\\\textrm{Mod}\\\\,}}(M)\\\\)</span> have lifts to <span>\\\\({{\\\\,\\\\textrm{Diff}\\\\,}}^+(M)\\\\)</span>, but there are finite subgroups of <span>\\\\({{\\\\,\\\\textrm{Mod}\\\\,}}(M)\\\\)</span> that do not lift to <span>\\\\({{\\\\,\\\\textrm{Diff}\\\\,}}^+(M)\\\\)</span>. We prove that the condition of whether a finite subgroup <span>\\\\(G \\\\le {{\\\\,\\\\textrm{Mod}\\\\,}}(M)\\\\)</span> lifts to <span>\\\\({{\\\\,\\\\textrm{Diff}\\\\,}}^+(M)\\\\)</span> is equivalent to the existence of a certain equivariant connected sum realizing <i>G</i>. For the case <span>\\\\(d = 6\\\\)</span>, we show this equivalence for all maximal finite subgroups <span>\\\\(G \\\\le {{\\\\,\\\\textrm{Mod}\\\\,}}(M)\\\\)</span>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00912-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00912-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 M 是一个光滑的 4-manifold ,下层是某个度数为 \(d \ge 6\ )的 del Pezzo 曲面。我们考虑 M 的光滑尼尔森实现问题:在商映射 \(\pi ...) 下,{{\textrm{Mod}\,}(M) = \pi _0({{\textrm{Homeo}\,}^+(M))的哪些有限子群有提升到 \({{\,\textrm{Diff}\,}}^+(M) \le {{\,\textrm{Homeo}\,}}^+(M)\) :{{\,\textrm{Homeo}\,}}^+(M) \rightarrow {{\,\textrm{Mod}\,}}(M)\)?对于(d \ge 7\ ),我们给出了这种有限子群的完整分类,对于(d = 6\ ),我们给出了部分答案。对于(d = 8)的情况,商映射((pi \))有一个包含在({{\textrm{Diff\,}}^+(M)\)中的图像的部分。对于 \(d = 7\) 的情况,我们证明 \({{\,\textrm{Mod}\,}}(M)\) 的所有有限阶元素都有擡起到 \({{\,\textrm{Diff}\、}^+(M)\)的有限子群不提升到 \({{\,\textrm{Mod}\,}(M)\)。我们证明,一个有限子群 \(G \le {{\,\textrm{Mod}\,}}(M)\) 是否上升到 \({{\,\textrm{Diff}\,}}^+(M)\) 的条件等价于某个等变连接和实现 G 的存在。对于 \(d = 6\) 的情况,我们证明了所有最大有限子群 \(G \le {{\,\textrm{Mod}\,}}(M)\) 的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Nielsen realization problem for high degree del Pezzo surfaces

分享
查看原文
The Nielsen realization problem for high degree del Pezzo surfaces

Let M be a smooth 4-manifold underlying some del Pezzo surface of degree \(d \ge 6\). We consider the smooth Nielsen realization problem for M: which finite subgroups of \({{\,\textrm{Mod}\,}}(M) = \pi _0({{\,\textrm{Homeo}\,}}^+(M))\) have lifts to \({{\,\textrm{Diff}\,}}^+(M) \le {{\,\textrm{Homeo}\,}}^+(M)\) under the quotient map \(\pi : {{\,\textrm{Homeo}\,}}^+(M) \rightarrow {{\,\textrm{Mod}\,}}(M)\)? We give a complete classification of such finite subgroups of \({{\,\textrm{Mod}\,}}(M)\) for \(d \ge 7\) and a partial answer for \(d = 6\). For the cases \(d \ge 8\), the quotient map \(\pi \) admits a section with image contained in \({{\,\textrm{Diff}\,}}^+(M)\). For the case \(d = 7\), we show that all finite order elements of \({{\,\textrm{Mod}\,}}(M)\) have lifts to \({{\,\textrm{Diff}\,}}^+(M)\), but there are finite subgroups of \({{\,\textrm{Mod}\,}}(M)\) that do not lift to \({{\,\textrm{Diff}\,}}^+(M)\). We prove that the condition of whether a finite subgroup \(G \le {{\,\textrm{Mod}\,}}(M)\) lifts to \({{\,\textrm{Diff}\,}}^+(M)\) is equivalent to the existence of a certain equivariant connected sum realizing G. For the case \(d = 6\), we show this equivalence for all maximal finite subgroups \(G \le {{\,\textrm{Mod}\,}}(M)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信