{"title":"论有界悖论集和李群","authors":"Grzegorz Tomkowicz","doi":"10.1007/s10711-024-00923-1","DOIUrl":null,"url":null,"abstract":"<p>We will prove that any non-empty open set in every complete connected metric space (<i>X</i>, <i>d</i>), where balls have compact closures, contains a paradoxical (uncountable) set relative to a non-supramenable connected Lie group that acts continuously and transitively on <i>X</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On bounded paradoxical sets and Lie groups\",\"authors\":\"Grzegorz Tomkowicz\",\"doi\":\"10.1007/s10711-024-00923-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We will prove that any non-empty open set in every complete connected metric space (<i>X</i>, <i>d</i>), where balls have compact closures, contains a paradoxical (uncountable) set relative to a non-supramenable connected Lie group that acts continuously and transitively on <i>X</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00923-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00923-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们将证明,在每个完整连通度量空间(X, d)中,球具有紧凑闭合的任何非空开集,都包含一个相对于连续且传递地作用于 X 的非可上推连通李群的悖论(不可数)集。
We will prove that any non-empty open set in every complete connected metric space (X, d), where balls have compact closures, contains a paradoxical (uncountable) set relative to a non-supramenable connected Lie group that acts continuously and transitively on X.