{"title":"$$textrm{Sp}(n,\\mathbb {R})$$ 的克莱因四对称对的分支规律","authors":"Jiaying Ding, Haian He, Huangyuan Pan, Lifu Wang","doi":"10.1007/s10711-024-00922-2","DOIUrl":null,"url":null,"abstract":"<p>For the real symplectic groups <span>\\(G=\\textrm{Sp}(n,\\mathbb {R})\\)</span>, we classify all the Klein four-symmetric pairs <span>\\((G,G^\\Gamma )\\)</span>, and determine whether there exist infinite-dimensional irreducible <span>\\((\\mathfrak {g},K)\\)</span>-modules discretely decomposable upon restriction to <span>\\(G^\\Gamma \\)</span>. As a consequence, we obtain a similar result to Chen and He (Int J Math 34(1):2250094, 2023, Corollary 21).</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"84 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branching laws of Klein four-symmetric pairs for $$\\\\textrm{Sp}(n,\\\\mathbb {R})$$\",\"authors\":\"Jiaying Ding, Haian He, Huangyuan Pan, Lifu Wang\",\"doi\":\"10.1007/s10711-024-00922-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the real symplectic groups <span>\\\\(G=\\\\textrm{Sp}(n,\\\\mathbb {R})\\\\)</span>, we classify all the Klein four-symmetric pairs <span>\\\\((G,G^\\\\Gamma )\\\\)</span>, and determine whether there exist infinite-dimensional irreducible <span>\\\\((\\\\mathfrak {g},K)\\\\)</span>-modules discretely decomposable upon restriction to <span>\\\\(G^\\\\Gamma \\\\)</span>. As a consequence, we obtain a similar result to Chen and He (Int J Math 34(1):2250094, 2023, Corollary 21).</p>\",\"PeriodicalId\":55103,\"journal\":{\"name\":\"Geometriae Dedicata\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometriae Dedicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00922-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00922-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于实交点群 \(G=\textrm{Sp}(n,\mathbb {R})\),我们对所有克莱因四对称对 \((G,G^\Gamma )\)进行了分类,并确定了是否存在限制于 \(G^\Gamma\)时可离散分解的无限维不可还原 \((\mathfrak {g},K)\)- 模块。因此,我们得到了与 Chen 和 He (Int J Math 34(1):2250094, 2023, Corollary 21) 类似的结果。
Branching laws of Klein four-symmetric pairs for $$\textrm{Sp}(n,\mathbb {R})$$
For the real symplectic groups \(G=\textrm{Sp}(n,\mathbb {R})\), we classify all the Klein four-symmetric pairs \((G,G^\Gamma )\), and determine whether there exist infinite-dimensional irreducible \((\mathfrak {g},K)\)-modules discretely decomposable upon restriction to \(G^\Gamma \). As a consequence, we obtain a similar result to Chen and He (Int J Math 34(1):2250094, 2023, Corollary 21).
期刊介绍:
Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems.
Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include:
A fast turn-around time for articles.
Special issues centered on specific topics.
All submitted papers should include some explanation of the context of the main results.
Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.