{"title":"$$textrm{Sp}(n,\\mathbb {R})$$ 的克莱因四对称对的分支规律","authors":"Jiaying Ding, Haian He, Huangyuan Pan, Lifu Wang","doi":"10.1007/s10711-024-00922-2","DOIUrl":null,"url":null,"abstract":"<p>For the real symplectic groups <span>\\(G=\\textrm{Sp}(n,\\mathbb {R})\\)</span>, we classify all the Klein four-symmetric pairs <span>\\((G,G^\\Gamma )\\)</span>, and determine whether there exist infinite-dimensional irreducible <span>\\((\\mathfrak {g},K)\\)</span>-modules discretely decomposable upon restriction to <span>\\(G^\\Gamma \\)</span>. As a consequence, we obtain a similar result to Chen and He (Int J Math 34(1):2250094, 2023, Corollary 21).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branching laws of Klein four-symmetric pairs for $$\\\\textrm{Sp}(n,\\\\mathbb {R})$$\",\"authors\":\"Jiaying Ding, Haian He, Huangyuan Pan, Lifu Wang\",\"doi\":\"10.1007/s10711-024-00922-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the real symplectic groups <span>\\\\(G=\\\\textrm{Sp}(n,\\\\mathbb {R})\\\\)</span>, we classify all the Klein four-symmetric pairs <span>\\\\((G,G^\\\\Gamma )\\\\)</span>, and determine whether there exist infinite-dimensional irreducible <span>\\\\((\\\\mathfrak {g},K)\\\\)</span>-modules discretely decomposable upon restriction to <span>\\\\(G^\\\\Gamma \\\\)</span>. As a consequence, we obtain a similar result to Chen and He (Int J Math 34(1):2250094, 2023, Corollary 21).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00922-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00922-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于实交点群 \(G=\textrm{Sp}(n,\mathbb {R})\),我们对所有克莱因四对称对 \((G,G^\Gamma )\)进行了分类,并确定了是否存在限制于 \(G^\Gamma\)时可离散分解的无限维不可还原 \((\mathfrak {g},K)\)- 模块。因此,我们得到了与 Chen 和 He (Int J Math 34(1):2250094, 2023, Corollary 21) 类似的结果。
Branching laws of Klein four-symmetric pairs for $$\textrm{Sp}(n,\mathbb {R})$$
For the real symplectic groups \(G=\textrm{Sp}(n,\mathbb {R})\), we classify all the Klein four-symmetric pairs \((G,G^\Gamma )\), and determine whether there exist infinite-dimensional irreducible \((\mathfrak {g},K)\)-modules discretely decomposable upon restriction to \(G^\Gamma \). As a consequence, we obtain a similar result to Chen and He (Int J Math 34(1):2250094, 2023, Corollary 21).