$$textrm{Sp}(n,\mathbb {R})$$ 的克莱因四对称对的分支规律

Pub Date : 2024-04-11 DOI:10.1007/s10711-024-00922-2
Jiaying Ding, Haian He, Huangyuan Pan, Lifu Wang
{"title":"$$textrm{Sp}(n,\\mathbb {R})$$ 的克莱因四对称对的分支规律","authors":"Jiaying Ding, Haian He, Huangyuan Pan, Lifu Wang","doi":"10.1007/s10711-024-00922-2","DOIUrl":null,"url":null,"abstract":"<p>For the real symplectic groups <span>\\(G=\\textrm{Sp}(n,\\mathbb {R})\\)</span>, we classify all the Klein four-symmetric pairs <span>\\((G,G^\\Gamma )\\)</span>, and determine whether there exist infinite-dimensional irreducible <span>\\((\\mathfrak {g},K)\\)</span>-modules discretely decomposable upon restriction to <span>\\(G^\\Gamma \\)</span>. As a consequence, we obtain a similar result to Chen and He (Int J Math 34(1):2250094, 2023, Corollary 21).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branching laws of Klein four-symmetric pairs for $$\\\\textrm{Sp}(n,\\\\mathbb {R})$$\",\"authors\":\"Jiaying Ding, Haian He, Huangyuan Pan, Lifu Wang\",\"doi\":\"10.1007/s10711-024-00922-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the real symplectic groups <span>\\\\(G=\\\\textrm{Sp}(n,\\\\mathbb {R})\\\\)</span>, we classify all the Klein four-symmetric pairs <span>\\\\((G,G^\\\\Gamma )\\\\)</span>, and determine whether there exist infinite-dimensional irreducible <span>\\\\((\\\\mathfrak {g},K)\\\\)</span>-modules discretely decomposable upon restriction to <span>\\\\(G^\\\\Gamma \\\\)</span>. As a consequence, we obtain a similar result to Chen and He (Int J Math 34(1):2250094, 2023, Corollary 21).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00922-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00922-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于实交点群 \(G=\textrm{Sp}(n,\mathbb {R})\),我们对所有克莱因四对称对 \((G,G^\Gamma )\)进行了分类,并确定了是否存在限制于 \(G^\Gamma\)时可离散分解的无限维不可还原 \((\mathfrak {g},K)\)- 模块。因此,我们得到了与 Chen 和 He (Int J Math 34(1):2250094, 2023, Corollary 21) 类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Branching laws of Klein four-symmetric pairs for $$\textrm{Sp}(n,\mathbb {R})$$

For the real symplectic groups \(G=\textrm{Sp}(n,\mathbb {R})\), we classify all the Klein four-symmetric pairs \((G,G^\Gamma )\), and determine whether there exist infinite-dimensional irreducible \((\mathfrak {g},K)\)-modules discretely decomposable upon restriction to \(G^\Gamma \). As a consequence, we obtain a similar result to Chen and He (Int J Math 34(1):2250094, 2023, Corollary 21).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信