Roumayssa Amrine, Miguel A. Montiel, Vicente Montiel, José Solla-Gullón
{"title":"评估基于铂铑纳米粒子的电极在电化学还原氮气至氨气过程中的应用","authors":"Roumayssa Amrine, Miguel A. Montiel, Vicente Montiel, José Solla-Gullón","doi":"10.1007/s12678-024-00870-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) is one of the most used chemicals. Industrially, ammonia is produced by hydrogenation of N<sub>2</sub> through the Haber–Bosch process, a process in which enormous amounts of CO<sub>2</sub> are released and requires a huge energy consumption (~ 2% of the total global energy). Therefore, it is of paramount importance to explore more sustainable and environmentally friendly routes to produce NH<sub>3</sub>. The electrochemical nitrogen reduction reaction (NRR) to ammonia represents a promising alternative that is receiving great attention but still needs to be significantly improved to be economically competitive. In this work, the NRR is studied on Pt–Rh nanoparticle–based electrodes. Carbon-supported Pt–Rh nanoparticles (2–4 nm) with different Pt:Rh atomic compositions were synthesized and subsequently airbrushed onto carbon Toray paper to fabricate electrodes. The electrochemical NRR experiments were performed in a H-cell in 0.1 M Na<sub>2</sub>SO<sub>4</sub> solution. The results obtained show interesting faradaic efficiencies (<i>FE</i>) towards NH<sub>3</sub> which range between 5 and 23% and reasonable and reliable NH<sub>3</sub> yield values of about 4.5 µg h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup>, depending on the atomic composition of the electrocatalysts and the metal loading. The electrodes also showed good stability and recyclability (constant <i>FE</i> and NH<sub>3</sub> yield in five consecutive experiments).</p><h3>Graphical Abstract</h3><p>Pt–Rh nanoparticle–based electrodes were employed for the NRR to NH<sub>3</sub> in 0.1 M Na<sub>2</sub>SO<sub>4</sub>. Interesting <i>FE</i> towards NH<sub>3</sub> and reasonable and reliable NH<sub>3</sub> yield values were observed depending on atomic composition and metal loading. Good stability and recyclability (constant <i>FE</i> and NH<sub>3</sub> yield in five consecutive experiments) were also observed.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 2-3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-024-00870-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Pt–Rh Nanoparticle–Based Electrodes for the Electrochemical Reduction of Nitrogen to Ammonia\",\"authors\":\"Roumayssa Amrine, Miguel A. Montiel, Vicente Montiel, José Solla-Gullón\",\"doi\":\"10.1007/s12678-024-00870-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ammonia (NH<sub>3</sub>) is one of the most used chemicals. Industrially, ammonia is produced by hydrogenation of N<sub>2</sub> through the Haber–Bosch process, a process in which enormous amounts of CO<sub>2</sub> are released and requires a huge energy consumption (~ 2% of the total global energy). Therefore, it is of paramount importance to explore more sustainable and environmentally friendly routes to produce NH<sub>3</sub>. The electrochemical nitrogen reduction reaction (NRR) to ammonia represents a promising alternative that is receiving great attention but still needs to be significantly improved to be economically competitive. In this work, the NRR is studied on Pt–Rh nanoparticle–based electrodes. Carbon-supported Pt–Rh nanoparticles (2–4 nm) with different Pt:Rh atomic compositions were synthesized and subsequently airbrushed onto carbon Toray paper to fabricate electrodes. The electrochemical NRR experiments were performed in a H-cell in 0.1 M Na<sub>2</sub>SO<sub>4</sub> solution. The results obtained show interesting faradaic efficiencies (<i>FE</i>) towards NH<sub>3</sub> which range between 5 and 23% and reasonable and reliable NH<sub>3</sub> yield values of about 4.5 µg h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup>, depending on the atomic composition of the electrocatalysts and the metal loading. The electrodes also showed good stability and recyclability (constant <i>FE</i> and NH<sub>3</sub> yield in five consecutive experiments).</p><h3>Graphical Abstract</h3><p>Pt–Rh nanoparticle–based electrodes were employed for the NRR to NH<sub>3</sub> in 0.1 M Na<sub>2</sub>SO<sub>4</sub>. Interesting <i>FE</i> towards NH<sub>3</sub> and reasonable and reliable NH<sub>3</sub> yield values were observed depending on atomic composition and metal loading. Good stability and recyclability (constant <i>FE</i> and NH<sub>3</sub> yield in five consecutive experiments) were also observed.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"15 2-3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12678-024-00870-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-024-00870-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00870-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Evaluation of Pt–Rh Nanoparticle–Based Electrodes for the Electrochemical Reduction of Nitrogen to Ammonia
Ammonia (NH3) is one of the most used chemicals. Industrially, ammonia is produced by hydrogenation of N2 through the Haber–Bosch process, a process in which enormous amounts of CO2 are released and requires a huge energy consumption (~ 2% of the total global energy). Therefore, it is of paramount importance to explore more sustainable and environmentally friendly routes to produce NH3. The electrochemical nitrogen reduction reaction (NRR) to ammonia represents a promising alternative that is receiving great attention but still needs to be significantly improved to be economically competitive. In this work, the NRR is studied on Pt–Rh nanoparticle–based electrodes. Carbon-supported Pt–Rh nanoparticles (2–4 nm) with different Pt:Rh atomic compositions were synthesized and subsequently airbrushed onto carbon Toray paper to fabricate electrodes. The electrochemical NRR experiments were performed in a H-cell in 0.1 M Na2SO4 solution. The results obtained show interesting faradaic efficiencies (FE) towards NH3 which range between 5 and 23% and reasonable and reliable NH3 yield values of about 4.5 µg h−1 mgcat−1, depending on the atomic composition of the electrocatalysts and the metal loading. The electrodes also showed good stability and recyclability (constant FE and NH3 yield in five consecutive experiments).
Graphical Abstract
Pt–Rh nanoparticle–based electrodes were employed for the NRR to NH3 in 0.1 M Na2SO4. Interesting FE towards NH3 and reasonable and reliable NH3 yield values were observed depending on atomic composition and metal loading. Good stability and recyclability (constant FE and NH3 yield in five consecutive experiments) were also observed.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.