交换单元的安德烈-奎伦同调

Pub Date : 2024-04-09 DOI:10.1007/s00233-024-10423-z
Bhavya Agrawalla, Nasief Khlaif, Haynes Miller
{"title":"交换单元的安德烈-奎伦同调","authors":"Bhavya Agrawalla, Nasief Khlaif, Haynes Miller","doi":"10.1007/s00233-024-10423-z","DOIUrl":null,"url":null,"abstract":"<p>We observe that Beck modules for a commutative monoid are exactly modules over a graded commutative ring associated to the monoid. Under this identification, the Quillen cohomology of commutative monoids is a special case of the André–Quillen cohomology for graded commutative rings, generalizing a result of Kurdiani and Pirashvili. To verify this we develop the necessary grading formalism. The partial cochain complex developed by Pierre Grillet for computing Quillen cohomology appears as the start of a modification of the Harrison cochain complex suggested by Michael Barr.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The André–Quillen cohomology of commutative monoids\",\"authors\":\"Bhavya Agrawalla, Nasief Khlaif, Haynes Miller\",\"doi\":\"10.1007/s00233-024-10423-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We observe that Beck modules for a commutative monoid are exactly modules over a graded commutative ring associated to the monoid. Under this identification, the Quillen cohomology of commutative monoids is a special case of the André–Quillen cohomology for graded commutative rings, generalizing a result of Kurdiani and Pirashvili. To verify this we develop the necessary grading formalism. The partial cochain complex developed by Pierre Grillet for computing Quillen cohomology appears as the start of a modification of the Harrison cochain complex suggested by Michael Barr.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10423-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10423-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们注意到,换元单元的贝克模块正是与该单元相关的分级换元环的模块。在这种识别下,交换单元的奎伦同调是有级交换环的安德烈-奎伦同调的特例,这推广了库尔迪亚尼和皮拉什维利的一个结果。为了验证这一点,我们开发了必要的分级形式主义。皮埃尔-格里莱(Pierre Grillet)为计算奎伦同调而开发的部分共链复数是迈克尔-巴尔(Michael Barr)建议的哈里森共链复数修正的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The André–Quillen cohomology of commutative monoids

We observe that Beck modules for a commutative monoid are exactly modules over a graded commutative ring associated to the monoid. Under this identification, the Quillen cohomology of commutative monoids is a special case of the André–Quillen cohomology for graded commutative rings, generalizing a result of Kurdiani and Pirashvili. To verify this we develop the necessary grading formalism. The partial cochain complex developed by Pierre Grillet for computing Quillen cohomology appears as the start of a modification of the Harrison cochain complex suggested by Michael Barr.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信