通过对跖点描述欧几里得球的特征

Pub Date : 2024-04-11 DOI:10.1007/s00010-024-01055-3
Xuguang Lu
{"title":"通过对跖点描述欧几里得球的特征","authors":"Xuguang Lu","doi":"10.1007/s00010-024-01055-3","DOIUrl":null,"url":null,"abstract":"<div><p>Arising from an equilibrium state of a Fermi–Dirac particle system at the lowest temperature, a new characterization of the Euclidean ball is proved: a compact set <span>\\(K\\subset {{{\\mathbb {R}}}^n}\\)</span> (having at least two elements) is an <i>n</i>-dimensional Euclidean ball if and only if for every pair <span>\\(x, y\\in \\partial K\\)</span> and every <span>\\(\\sigma \\in {{{\\mathbb {S}}}^{n-1}}\\)</span>, either <span>\\(\\frac{1}{2}(x+y)+\\frac{1}{2}|x-y|\\sigma \\in K\\)</span> or <span>\\(\\frac{1}{2}(x+y)-\\frac{1}{2}|x-y|\\sigma \\in K\\)</span>. As an application, a measure version of this characterization of the Euclidean ball is also proved and thus the previous result proved for <span>\\(n=3\\)</span> on the classification of equilibrium states of a Fermi–Dirac particle system holds also true for all <span>\\(n\\ge 2\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01055-3.pdf","citationCount":"0","resultStr":"{\"title\":\"A characterization of the Euclidean ball via antipodal points\",\"authors\":\"Xuguang Lu\",\"doi\":\"10.1007/s00010-024-01055-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Arising from an equilibrium state of a Fermi–Dirac particle system at the lowest temperature, a new characterization of the Euclidean ball is proved: a compact set <span>\\\\(K\\\\subset {{{\\\\mathbb {R}}}^n}\\\\)</span> (having at least two elements) is an <i>n</i>-dimensional Euclidean ball if and only if for every pair <span>\\\\(x, y\\\\in \\\\partial K\\\\)</span> and every <span>\\\\(\\\\sigma \\\\in {{{\\\\mathbb {S}}}^{n-1}}\\\\)</span>, either <span>\\\\(\\\\frac{1}{2}(x+y)+\\\\frac{1}{2}|x-y|\\\\sigma \\\\in K\\\\)</span> or <span>\\\\(\\\\frac{1}{2}(x+y)-\\\\frac{1}{2}|x-y|\\\\sigma \\\\in K\\\\)</span>. As an application, a measure version of this characterization of the Euclidean ball is also proved and thus the previous result proved for <span>\\\\(n=3\\\\)</span> on the classification of equilibrium states of a Fermi–Dirac particle system holds also true for all <span>\\\\(n\\\\ge 2\\\\)</span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01055-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01055-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01055-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从费米-狄拉克粒子系统在最低温度下的平衡态出发,证明了欧几里得球的一个新特征:一个紧凑集(K子集{{{{mathbb {R}}^n}\) (至少有两个元素)是一个n维的欧几里得球,当且仅当对于每一对 \(x、y in \partial K\) 和 every \(\sigma \in {{\mathbb {S}}}^{n-1}}\), either \(\frac{1}{2}(x+y)+\frac{1}{2}|x-y|\sigma \in K\) or\(\frac{1}{2}(x+y)-\frac{1}{2}|x-y|\sigma \in K\).作为一个应用,欧几里得球的这一特征的度量版本也被证明了,因此之前证明的关于费米-狄拉克粒子系统平衡态分类的\(n=3\)的结果对于所有的\(n\ge 2\) 也是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A characterization of the Euclidean ball via antipodal points

Arising from an equilibrium state of a Fermi–Dirac particle system at the lowest temperature, a new characterization of the Euclidean ball is proved: a compact set \(K\subset {{{\mathbb {R}}}^n}\) (having at least two elements) is an n-dimensional Euclidean ball if and only if for every pair \(x, y\in \partial K\) and every \(\sigma \in {{{\mathbb {S}}}^{n-1}}\), either \(\frac{1}{2}(x+y)+\frac{1}{2}|x-y|\sigma \in K\) or \(\frac{1}{2}(x+y)-\frac{1}{2}|x-y|\sigma \in K\). As an application, a measure version of this characterization of the Euclidean ball is also proved and thus the previous result proved for \(n=3\) on the classification of equilibrium states of a Fermi–Dirac particle system holds also true for all \(n\ge 2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信