{"title":"非阿贝尔群的余弦加减公式","authors":"Omar Ajebbar, Elhoucien Elqorachi, Henrik Stetkær","doi":"10.1007/s00010-024-01052-6","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a topological group, and let <i>C</i>(<i>G</i>) denote the algebra of continuous, complex valued functions on <i>G</i>. We determine the solutions <span>\\(f,g,h \\in C(G)\\)</span> of the Levi-Civita equation </p><span>$$\\begin{aligned} g(xy) = g(x)g(y) + f(x)h(y), \\ x,y \\in G, \\end{aligned}$$</span><p>that extends the cosine addition law. As a corollary we obtain the solutions <span>\\(f,g \\in C(G)\\)</span> of the cosine subtraction law <span>\\(g(xy^*) = g(x)g(y) + f(x)f(y)\\)</span>, <span>\\(x,y \\in G\\)</span> where <span>\\(x \\mapsto x^*\\)</span> is a continuous involution of <i>G</i>. That <span>\\(x \\mapsto x^*\\)</span> is an involution, means that <span>\\((xy)^* = y^*x^*\\)</span> and <span>\\(x^{**} = x\\)</span> for all <span>\\(x,y \\in G\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cosine addition and subtraction formulas on non-abelian groups\",\"authors\":\"Omar Ajebbar, Elhoucien Elqorachi, Henrik Stetkær\",\"doi\":\"10.1007/s00010-024-01052-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a topological group, and let <i>C</i>(<i>G</i>) denote the algebra of continuous, complex valued functions on <i>G</i>. We determine the solutions <span>\\\\(f,g,h \\\\in C(G)\\\\)</span> of the Levi-Civita equation </p><span>$$\\\\begin{aligned} g(xy) = g(x)g(y) + f(x)h(y), \\\\ x,y \\\\in G, \\\\end{aligned}$$</span><p>that extends the cosine addition law. As a corollary we obtain the solutions <span>\\\\(f,g \\\\in C(G)\\\\)</span> of the cosine subtraction law <span>\\\\(g(xy^*) = g(x)g(y) + f(x)f(y)\\\\)</span>, <span>\\\\(x,y \\\\in G\\\\)</span> where <span>\\\\(x \\\\mapsto x^*\\\\)</span> is a continuous involution of <i>G</i>. That <span>\\\\(x \\\\mapsto x^*\\\\)</span> is an involution, means that <span>\\\\((xy)^* = y^*x^*\\\\)</span> and <span>\\\\(x^{**} = x\\\\)</span> for all <span>\\\\(x,y \\\\in G\\\\)</span>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01052-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01052-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个拓扑群,让 C(G) 表示 G 上连续复值函数的代数。我们确定了 Levi-Civita 方程 $$begin{aligned} g(xy) = g(x)g(y) + f(x)h(y), \ x,y \ in G, \end{aligned}$ 的解(f,g,h \ in C(G)),它扩展了余弦加法法则。作为推论,我们得到了余弦减法法则 \(g(xy^*) = g(x)g(y) + f(x)f(y)\), \(x,y \in G\) 的解 \(f,g \in C(G)\) 其中 \(x \mapsto x^*\) 是 G 的连续反卷。(x映射到x^*)是一个内卷,意味着对于所有的\(x,y in G\) ,\((xy)^* = y^*x^*\) 和\(x^{**} = x\).
The cosine addition and subtraction formulas on non-abelian groups
Let G be a topological group, and let C(G) denote the algebra of continuous, complex valued functions on G. We determine the solutions \(f,g,h \in C(G)\) of the Levi-Civita equation
that extends the cosine addition law. As a corollary we obtain the solutions \(f,g \in C(G)\) of the cosine subtraction law \(g(xy^*) = g(x)g(y) + f(x)f(y)\), \(x,y \in G\) where \(x \mapsto x^*\) is a continuous involution of G. That \(x \mapsto x^*\) is an involution, means that \((xy)^* = y^*x^*\) and \(x^{**} = x\) for all \(x,y \in G\).