立方体系统家族的全球中心

IF 0.9 3区 数学 Q2 MATHEMATICS
Raul Felipe Appis, Jaume Llibre
{"title":"立方体系统家族的全球中心","authors":"Raul Felipe Appis,&nbsp;Jaume Llibre","doi":"10.1007/s00010-024-01051-7","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the family of polynomial differential systems of degree 3, or simply cubic systems </p><div><div><span>$$ x' = y, \\quad y' = -x + a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x^3 + a_5 x^2 y + a_6 xy^2 + a_7 y^3, $$</span></div></div><p>in the plane <span>\\(\\mathbb {R}^2\\)</span>. An equilibrium point <span>\\((x_0,y_0)\\)</span> of a planar differential system is a <i>center</i> if there is a neighborhood <span>\\(\\mathcal {U}\\)</span> of <span>\\((x_0,y_0)\\)</span> such that <span>\\(\\mathcal {U} \\backslash \\{(x_0,y_0)\\}\\)</span> is filled with periodic orbits. When <span>\\(\\mathbb {R}^2\\setminus \\{(x_0,y_0)\\}\\)</span> is filled with periodic orbits, then the center is a <i>global center</i>. For this family of cubic systems Lloyd and Pearson characterized in Lloyd and Pearson (Comput Math Appl 60:2797–2805, 2010) when the origin of coordinates is a center. We classify which of these centers are global centers.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 5","pages":"1373 - 1389"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01051-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Global centers of a family of cubic systems\",\"authors\":\"Raul Felipe Appis,&nbsp;Jaume Llibre\",\"doi\":\"10.1007/s00010-024-01051-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider the family of polynomial differential systems of degree 3, or simply cubic systems </p><div><div><span>$$ x' = y, \\\\quad y' = -x + a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x^3 + a_5 x^2 y + a_6 xy^2 + a_7 y^3, $$</span></div></div><p>in the plane <span>\\\\(\\\\mathbb {R}^2\\\\)</span>. An equilibrium point <span>\\\\((x_0,y_0)\\\\)</span> of a planar differential system is a <i>center</i> if there is a neighborhood <span>\\\\(\\\\mathcal {U}\\\\)</span> of <span>\\\\((x_0,y_0)\\\\)</span> such that <span>\\\\(\\\\mathcal {U} \\\\backslash \\\\{(x_0,y_0)\\\\}\\\\)</span> is filled with periodic orbits. When <span>\\\\(\\\\mathbb {R}^2\\\\setminus \\\\{(x_0,y_0)\\\\}\\\\)</span> is filled with periodic orbits, then the center is a <i>global center</i>. For this family of cubic systems Lloyd and Pearson characterized in Lloyd and Pearson (Comput Math Appl 60:2797–2805, 2010) when the origin of coordinates is a center. We classify which of these centers are global centers.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"98 5\",\"pages\":\"1373 - 1389\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01051-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01051-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01051-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑平面 \(\mathbb {R}^2\) 中的 3 度多项式微分系统族,或者简单的立方系统 $$ x' = y, \quad y' = -x + a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x^3 + a_5 x^2 y + a_6 xy^2 + a_7 y^3, $$。如果存在一个 \((x_0,y_0)\) 的邻域 \(\mathcal {U}\) 使得 \(\mathcal {U}\) 是一个中心,那么平面微分系统的平衡点 \((x_0,y_0)\) 就是一个中心。\充满了周期性的轨道。当 \(\mathbb {R}^2\setminus \{(x_0,y_0)\})充满了周期性轨道时,那么中心就是全局中心。劳埃德和皮尔逊(Comput Math Appl 60:2797-2805, 2010)在《计算数学应用 60:2797-2805,2010》一文中描述了这个立方系统家族中坐标原点为中心时的特征。我们对这些中心中哪些是全局中心进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global centers of a family of cubic systems

Global centers of a family of cubic systems

Consider the family of polynomial differential systems of degree 3, or simply cubic systems

$$ x' = y, \quad y' = -x + a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x^3 + a_5 x^2 y + a_6 xy^2 + a_7 y^3, $$

in the plane \(\mathbb {R}^2\). An equilibrium point \((x_0,y_0)\) of a planar differential system is a center if there is a neighborhood \(\mathcal {U}\) of \((x_0,y_0)\) such that \(\mathcal {U} \backslash \{(x_0,y_0)\}\) is filled with periodic orbits. When \(\mathbb {R}^2\setminus \{(x_0,y_0)\}\) is filled with periodic orbits, then the center is a global center. For this family of cubic systems Lloyd and Pearson characterized in Lloyd and Pearson (Comput Math Appl 60:2797–2805, 2010) when the origin of coordinates is a center. We classify which of these centers are global centers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信