立方体系统家族的全球中心

Pub Date : 2024-04-05 DOI:10.1007/s00010-024-01051-7
Raul Felipe Appis, Jaume Llibre
{"title":"立方体系统家族的全球中心","authors":"Raul Felipe Appis,&nbsp;Jaume Llibre","doi":"10.1007/s00010-024-01051-7","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the family of polynomial differential systems of degree 3, or simply cubic systems </p><div><div><span>$$ x' = y, \\quad y' = -x + a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x^3 + a_5 x^2 y + a_6 xy^2 + a_7 y^3, $$</span></div></div><p>in the plane <span>\\(\\mathbb {R}^2\\)</span>. An equilibrium point <span>\\((x_0,y_0)\\)</span> of a planar differential system is a <i>center</i> if there is a neighborhood <span>\\(\\mathcal {U}\\)</span> of <span>\\((x_0,y_0)\\)</span> such that <span>\\(\\mathcal {U} \\backslash \\{(x_0,y_0)\\}\\)</span> is filled with periodic orbits. When <span>\\(\\mathbb {R}^2\\setminus \\{(x_0,y_0)\\}\\)</span> is filled with periodic orbits, then the center is a <i>global center</i>. For this family of cubic systems Lloyd and Pearson characterized in Lloyd and Pearson (Comput Math Appl 60:2797–2805, 2010) when the origin of coordinates is a center. We classify which of these centers are global centers.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01051-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Global centers of a family of cubic systems\",\"authors\":\"Raul Felipe Appis,&nbsp;Jaume Llibre\",\"doi\":\"10.1007/s00010-024-01051-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider the family of polynomial differential systems of degree 3, or simply cubic systems </p><div><div><span>$$ x' = y, \\\\quad y' = -x + a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x^3 + a_5 x^2 y + a_6 xy^2 + a_7 y^3, $$</span></div></div><p>in the plane <span>\\\\(\\\\mathbb {R}^2\\\\)</span>. An equilibrium point <span>\\\\((x_0,y_0)\\\\)</span> of a planar differential system is a <i>center</i> if there is a neighborhood <span>\\\\(\\\\mathcal {U}\\\\)</span> of <span>\\\\((x_0,y_0)\\\\)</span> such that <span>\\\\(\\\\mathcal {U} \\\\backslash \\\\{(x_0,y_0)\\\\}\\\\)</span> is filled with periodic orbits. When <span>\\\\(\\\\mathbb {R}^2\\\\setminus \\\\{(x_0,y_0)\\\\}\\\\)</span> is filled with periodic orbits, then the center is a <i>global center</i>. For this family of cubic systems Lloyd and Pearson characterized in Lloyd and Pearson (Comput Math Appl 60:2797–2805, 2010) when the origin of coordinates is a center. We classify which of these centers are global centers.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01051-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01051-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01051-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑平面 \(\mathbb {R}^2\) 中的 3 度多项式微分系统族,或者简单的立方系统 $$ x' = y, \quad y' = -x + a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x^3 + a_5 x^2 y + a_6 xy^2 + a_7 y^3, $$。如果存在一个 \((x_0,y_0)\) 的邻域 \(\mathcal {U}\) 使得 \(\mathcal {U}\) 是一个中心,那么平面微分系统的平衡点 \((x_0,y_0)\) 就是一个中心。\充满了周期性的轨道。当 \(\mathbb {R}^2\setminus \{(x_0,y_0)\})充满了周期性轨道时,那么中心就是全局中心。劳埃德和皮尔逊(Comput Math Appl 60:2797-2805, 2010)在《计算数学应用 60:2797-2805,2010》一文中描述了这个立方系统家族中坐标原点为中心时的特征。我们对这些中心中哪些是全局中心进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global centers of a family of cubic systems

分享
查看原文
Global centers of a family of cubic systems

Consider the family of polynomial differential systems of degree 3, or simply cubic systems

$$ x' = y, \quad y' = -x + a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x^3 + a_5 x^2 y + a_6 xy^2 + a_7 y^3, $$

in the plane \(\mathbb {R}^2\). An equilibrium point \((x_0,y_0)\) of a planar differential system is a center if there is a neighborhood \(\mathcal {U}\) of \((x_0,y_0)\) such that \(\mathcal {U} \backslash \{(x_0,y_0)\}\) is filled with periodic orbits. When \(\mathbb {R}^2\setminus \{(x_0,y_0)\}\) is filled with periodic orbits, then the center is a global center. For this family of cubic systems Lloyd and Pearson characterized in Lloyd and Pearson (Comput Math Appl 60:2797–2805, 2010) when the origin of coordinates is a center. We classify which of these centers are global centers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信