爱泼斯坦-彭纳凸壳的边界度量和离散保角性

Pub Date : 2024-04-03 DOI:10.1007/s10711-024-00901-7
Xin Nie
{"title":"爱泼斯坦-彭纳凸壳的边界度量和离散保角性","authors":"Xin Nie","doi":"10.1007/s10711-024-00901-7","DOIUrl":null,"url":null,"abstract":"<p>The Epstein-Penner convex hull construction associates to every decorated punctured hyperbolic surface a convex set in the Minkowski space. It works in the de Sitter and anti-de Sitter spaces as well. In these three spaces, the quotient of the spacelike boundary part of the convex set has an induced Euclidean, spherical and hyperbolic metric, respectively, with conical singularities. We show that this gives a bijection from the decorated Teichmüller space to a moduli space of such metrics in the Euclidean and hyperbolic cases, as well as a bijection between specific subspaces of them in the spherical case. Moreover, varying the decoration of a fixed hyperbolic surface corresponds to a discrete conformal change of the metric. This gives a new 3-dimensional interpretation of discrete conformality which is in a sense inverse to the Bobenko-Pinkall-Springborn interpretation.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary metric of Epstein-Penner convex hull and discrete conformality\",\"authors\":\"Xin Nie\",\"doi\":\"10.1007/s10711-024-00901-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Epstein-Penner convex hull construction associates to every decorated punctured hyperbolic surface a convex set in the Minkowski space. It works in the de Sitter and anti-de Sitter spaces as well. In these three spaces, the quotient of the spacelike boundary part of the convex set has an induced Euclidean, spherical and hyperbolic metric, respectively, with conical singularities. We show that this gives a bijection from the decorated Teichmüller space to a moduli space of such metrics in the Euclidean and hyperbolic cases, as well as a bijection between specific subspaces of them in the spherical case. Moreover, varying the decoration of a fixed hyperbolic surface corresponds to a discrete conformal change of the metric. This gives a new 3-dimensional interpretation of discrete conformality which is in a sense inverse to the Bobenko-Pinkall-Springborn interpretation.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00901-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00901-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

爱泼斯坦-彭纳凸壳构造将每个经过装饰的双曲面与闵科夫斯基空间中的一个凸集联系起来。它也适用于德西特空间和反德西特空间。在这三个空间中,凸集的类空间边界部分的商分别具有诱导欧几里得度量、球面度量和双曲度量,并具有圆锥奇点。我们证明,在欧几里得和双曲情况下,这给出了从装饰的泰希米勒空间到此类度量的模空间的双射关系,以及在球面情况下,它们的特定子空间之间的双射关系。此外,改变固定双曲面的装饰相当于度量的离散保角变化。这给出了离散保角的一种新的三维解释,在某种意义上与波本科-平卡尔-斯普林伯恩解释相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Boundary metric of Epstein-Penner convex hull and discrete conformality

The Epstein-Penner convex hull construction associates to every decorated punctured hyperbolic surface a convex set in the Minkowski space. It works in the de Sitter and anti-de Sitter spaces as well. In these three spaces, the quotient of the spacelike boundary part of the convex set has an induced Euclidean, spherical and hyperbolic metric, respectively, with conical singularities. We show that this gives a bijection from the decorated Teichmüller space to a moduli space of such metrics in the Euclidean and hyperbolic cases, as well as a bijection between specific subspaces of them in the spherical case. Moreover, varying the decoration of a fixed hyperbolic surface corresponds to a discrete conformal change of the metric. This gives a new 3-dimensional interpretation of discrete conformality which is in a sense inverse to the Bobenko-Pinkall-Springborn interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信