出现行为与类物理行为

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xiaobo Hou, Wanshan Lin, Xueting Tian, Xutong Zhao
{"title":"出现行为与类物理行为","authors":"Xiaobo Hou, Wanshan Lin, Xueting Tian, Xutong Zhao","doi":"10.1142/s0218127424500548","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the dynamical complexity of points with emergence behavior but without weak face behavior, especially for points without physical-like behavior in certain dynamical systems such as transitive Anosov systems. We use the tools of saturated sets to prove that these points show strong dynamical complexity in the sense of entropy, density and distributional chaos. We obtain some observations of those results related to irregular sets and level sets. These results strengthen the previous results of [Catsigeras <i>et al</i>., 2019; Hou <i>et al</i>., 2023].</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"42 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence Behavior Versus Physical-Like Behavior\",\"authors\":\"Xiaobo Hou, Wanshan Lin, Xueting Tian, Xutong Zhao\",\"doi\":\"10.1142/s0218127424500548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the dynamical complexity of points with emergence behavior but without weak face behavior, especially for points without physical-like behavior in certain dynamical systems such as transitive Anosov systems. We use the tools of saturated sets to prove that these points show strong dynamical complexity in the sense of entropy, density and distributional chaos. We obtain some observations of those results related to irregular sets and level sets. These results strengthen the previous results of [Catsigeras <i>et al</i>., 2019; Hou <i>et al</i>., 2023].</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500548\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500548","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了具有涌现行为但不具有弱面行为的点的动力学复杂性,特别是某些动力学系统(如反式阿诺索夫系统)中不具有类物理行为的点。我们使用饱和集的工具证明,这些点在熵,密度和分布混沌的意义上表现出很强的动力学复杂性。我们获得了与不规则集和水平集相关的这些结果的一些观察结果。这些结果加强了 [Catsigeras 等人,2019;Hou 等人,2023] 以前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergence Behavior Versus Physical-Like Behavior

In this paper, we study the dynamical complexity of points with emergence behavior but without weak face behavior, especially for points without physical-like behavior in certain dynamical systems such as transitive Anosov systems. We use the tools of saturated sets to prove that these points show strong dynamical complexity in the sense of entropy, density and distributional chaos. We obtain some observations of those results related to irregular sets and level sets. These results strengthen the previous results of [Catsigeras et al., 2019; Hou et al., 2023].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信