Kac 多项式的广义化和 $${{\,\textrm{GL}\,}}_n(\mathbb {F}_q)$$ 的张量乘积表征

Pub Date : 2024-04-03 DOI:10.1007/s00031-024-09854-3
{"title":"Kac 多项式的广义化和 $${{\\,\\textrm{GL}\\,}}_n(\\mathbb {F}_q)$$ 的张量乘积表征","authors":"","doi":"10.1007/s00031-024-09854-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Given a <em>generic</em> <em>k</em>-tuple <span> <span>\\((\\mathcal {X}_1,\\dots ,\\mathcal {X}_k)\\)</span> </span> of split semisimple irreducible characters of <span> <span>\\(\\textrm{GL}_n(\\mathbb {F}_q)\\)</span> </span>, Hausel, Letellier and Rodriguez-Villegas (<em>Adv. Math.</em> 234:85–128, 2013, Theorem 1.4.1) constructed a <em>star-shaped</em> quiver <span> <span>\\(Q=(I,\\Omega )\\)</span> </span> together with a dimension vector <span> <span>\\(\\alpha \\in \\mathbb {N}^I\\)</span> </span> and they proved that <span> <EquationNumber>0.0.1</EquationNumber> <span>$$\\begin{aligned} \\left\\langle \\mathcal {X}_1\\otimes \\cdots \\otimes \\mathcal {X}_k,1\\right\\rangle =a_{Q,\\alpha }(q) \\end{aligned}$$</span> </span>where <span> <span>\\(a_{Q,\\alpha }(t)\\in \\mathbb {Z}[t]\\)</span> </span> is the so-called <em>Kac polynomial</em>, i.e., it is the counting polynomial for the number of isomorphism classes of absolutely indecomposable representations of <em>Q</em> of dimension vector <span> <span>\\(\\alpha \\)</span> </span> over finite fields. Moreover, it was conjectured by Kac (1983) and proved by Hausel-Letellier-Villegas (<em>Ann. of Math. (2)</em> 177(3):1147–1168, 2013) that <span> <span>\\(a_{Q,\\alpha }(t)\\)</span> </span> has non-negative integer coefficients. From the above formula together with Kac’s (1983) results, they deduced that <span> <span>\\(\\left\\langle \\mathcal {X}_1\\otimes \\cdots \\otimes \\mathcal {X}_k,1\\right\\rangle \\ne 0\\)</span> </span> if and only if <span> <span>\\(\\alpha \\)</span> </span> is a root of <em>Q</em>; moreover, <span> <span>\\(\\left\\langle \\mathcal {X}_1\\otimes \\cdots \\otimes \\mathcal {X}_k,1\\right\\rangle =1\\)</span> </span> exactly when <span> <span>\\(\\alpha \\)</span> </span> is a real root. In this paper, we extend their result to any <em>k</em>-tuple <span> <span>\\((\\mathcal {X}_1,\\dots ,\\mathcal {X}_k)\\)</span> </span> of split semisimple irreducible characters (which are not necessarily generic). To do that, we introduce a stratification indexed by subsets <span> <span>\\(V\\subset \\mathbb {N}^I\\)</span> </span> on the set of <em>k</em>-tuples of split semisimple irreducible characters of <span> <span>\\(\\textrm{GL}_n(\\mathbb {F}_q)\\)</span> </span>. The part corresponding to <span> <span>\\(V=\\{\\alpha \\}\\)</span> </span> consists of the subset of generic <em>k</em>-tuples <span> <span>\\((\\mathcal {X}_1,\\dots ,\\mathcal {X}_k)\\)</span> </span>. A <em>k</em>-tuple <span> <span>\\((\\mathcal {X}_1,\\dots ,\\mathcal {X}_k)\\)</span> </span> in the stratum corresponding to <span> <span>\\(V\\subset \\mathbb {N}^I\\)</span> </span> is said to be of level <em>V</em>. A representation <span> <span>\\(\\rho \\)</span> </span> of <span> <span>\\((Q,\\alpha )\\)</span> </span> is said to be of level at most <span> <span>\\(V\\subset \\mathbb {N}^I\\)</span> </span> if the dimension vectors of the indecomposable components of <span> <span>\\(\\rho \\otimes _{\\mathbb {F}_q}\\overline{\\mathbb {F}}_q\\)</span> </span> belong to <em>V</em>. Given a <em>k</em>-tuple <span> <span>\\((\\mathcal {X}_1,\\dots ,\\mathcal {X}_k)\\)</span> </span> of level <em>V</em>, our main theorem is the following generalization of Formula (<span>0.0.1</span>) <span> <span>$$\\begin{aligned} \\left\\langle \\mathcal {X}_1\\otimes \\cdots \\otimes \\mathcal {X}_k,1\\right\\rangle =M_{Q,\\alpha ,V}(q) \\end{aligned}$$</span> </span>where <span> <span>\\(M_{Q,\\alpha ,V}(t)\\in \\mathbb {Z}[t]\\)</span> </span> is the counting polynomial for the number of isomorphism classes of representations of <span> <span>\\((Q,\\alpha )\\)</span> </span> over <span> <span>\\(\\mathbb {F}_q\\)</span> </span> of level at most <em>V</em>. Moreover, we prove a formula expressing <span> <span>\\(M_{Q,\\alpha ,V}(t)\\)</span> </span> in terms of Kac polynomials and so we get a formula expressing any multiplicity <span> <span>\\(\\left\\langle \\mathcal {X}_1\\otimes \\cdots \\otimes \\mathcal {X}_k,1\\right\\rangle \\)</span> </span> in terms of generic ones. As another consequence, we prove that <span> <span>\\( \\left\\langle \\mathcal {X}_1\\otimes \\cdots \\otimes \\mathcal {X}_k,1\\right\\rangle \\)</span> </span> is a polynomial in <em>q</em> with non-negative integer coefficients and we give a criterion for its non-vanishing in terms of the root system of <em>Q</em>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalization of Kac Polynomials and Tensor Product of Representations of $${{\\\\,\\\\textrm{GL}\\\\,}}_n(\\\\mathbb {F}_q)$$\",\"authors\":\"\",\"doi\":\"10.1007/s00031-024-09854-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Given a <em>generic</em> <em>k</em>-tuple <span> <span>\\\\((\\\\mathcal {X}_1,\\\\dots ,\\\\mathcal {X}_k)\\\\)</span> </span> of split semisimple irreducible characters of <span> <span>\\\\(\\\\textrm{GL}_n(\\\\mathbb {F}_q)\\\\)</span> </span>, Hausel, Letellier and Rodriguez-Villegas (<em>Adv. Math.</em> 234:85–128, 2013, Theorem 1.4.1) constructed a <em>star-shaped</em> quiver <span> <span>\\\\(Q=(I,\\\\Omega )\\\\)</span> </span> together with a dimension vector <span> <span>\\\\(\\\\alpha \\\\in \\\\mathbb {N}^I\\\\)</span> </span> and they proved that <span> <EquationNumber>0.0.1</EquationNumber> <span>$$\\\\begin{aligned} \\\\left\\\\langle \\\\mathcal {X}_1\\\\otimes \\\\cdots \\\\otimes \\\\mathcal {X}_k,1\\\\right\\\\rangle =a_{Q,\\\\alpha }(q) \\\\end{aligned}$$</span> </span>where <span> <span>\\\\(a_{Q,\\\\alpha }(t)\\\\in \\\\mathbb {Z}[t]\\\\)</span> </span> is the so-called <em>Kac polynomial</em>, i.e., it is the counting polynomial for the number of isomorphism classes of absolutely indecomposable representations of <em>Q</em> of dimension vector <span> <span>\\\\(\\\\alpha \\\\)</span> </span> over finite fields. Moreover, it was conjectured by Kac (1983) and proved by Hausel-Letellier-Villegas (<em>Ann. of Math. (2)</em> 177(3):1147–1168, 2013) that <span> <span>\\\\(a_{Q,\\\\alpha }(t)\\\\)</span> </span> has non-negative integer coefficients. From the above formula together with Kac’s (1983) results, they deduced that <span> <span>\\\\(\\\\left\\\\langle \\\\mathcal {X}_1\\\\otimes \\\\cdots \\\\otimes \\\\mathcal {X}_k,1\\\\right\\\\rangle \\\\ne 0\\\\)</span> </span> if and only if <span> <span>\\\\(\\\\alpha \\\\)</span> </span> is a root of <em>Q</em>; moreover, <span> <span>\\\\(\\\\left\\\\langle \\\\mathcal {X}_1\\\\otimes \\\\cdots \\\\otimes \\\\mathcal {X}_k,1\\\\right\\\\rangle =1\\\\)</span> </span> exactly when <span> <span>\\\\(\\\\alpha \\\\)</span> </span> is a real root. In this paper, we extend their result to any <em>k</em>-tuple <span> <span>\\\\((\\\\mathcal {X}_1,\\\\dots ,\\\\mathcal {X}_k)\\\\)</span> </span> of split semisimple irreducible characters (which are not necessarily generic). To do that, we introduce a stratification indexed by subsets <span> <span>\\\\(V\\\\subset \\\\mathbb {N}^I\\\\)</span> </span> on the set of <em>k</em>-tuples of split semisimple irreducible characters of <span> <span>\\\\(\\\\textrm{GL}_n(\\\\mathbb {F}_q)\\\\)</span> </span>. The part corresponding to <span> <span>\\\\(V=\\\\{\\\\alpha \\\\}\\\\)</span> </span> consists of the subset of generic <em>k</em>-tuples <span> <span>\\\\((\\\\mathcal {X}_1,\\\\dots ,\\\\mathcal {X}_k)\\\\)</span> </span>. A <em>k</em>-tuple <span> <span>\\\\((\\\\mathcal {X}_1,\\\\dots ,\\\\mathcal {X}_k)\\\\)</span> </span> in the stratum corresponding to <span> <span>\\\\(V\\\\subset \\\\mathbb {N}^I\\\\)</span> </span> is said to be of level <em>V</em>. A representation <span> <span>\\\\(\\\\rho \\\\)</span> </span> of <span> <span>\\\\((Q,\\\\alpha )\\\\)</span> </span> is said to be of level at most <span> <span>\\\\(V\\\\subset \\\\mathbb {N}^I\\\\)</span> </span> if the dimension vectors of the indecomposable components of <span> <span>\\\\(\\\\rho \\\\otimes _{\\\\mathbb {F}_q}\\\\overline{\\\\mathbb {F}}_q\\\\)</span> </span> belong to <em>V</em>. Given a <em>k</em>-tuple <span> <span>\\\\((\\\\mathcal {X}_1,\\\\dots ,\\\\mathcal {X}_k)\\\\)</span> </span> of level <em>V</em>, our main theorem is the following generalization of Formula (<span>0.0.1</span>) <span> <span>$$\\\\begin{aligned} \\\\left\\\\langle \\\\mathcal {X}_1\\\\otimes \\\\cdots \\\\otimes \\\\mathcal {X}_k,1\\\\right\\\\rangle =M_{Q,\\\\alpha ,V}(q) \\\\end{aligned}$$</span> </span>where <span> <span>\\\\(M_{Q,\\\\alpha ,V}(t)\\\\in \\\\mathbb {Z}[t]\\\\)</span> </span> is the counting polynomial for the number of isomorphism classes of representations of <span> <span>\\\\((Q,\\\\alpha )\\\\)</span> </span> over <span> <span>\\\\(\\\\mathbb {F}_q\\\\)</span> </span> of level at most <em>V</em>. Moreover, we prove a formula expressing <span> <span>\\\\(M_{Q,\\\\alpha ,V}(t)\\\\)</span> </span> in terms of Kac polynomials and so we get a formula expressing any multiplicity <span> <span>\\\\(\\\\left\\\\langle \\\\mathcal {X}_1\\\\otimes \\\\cdots \\\\otimes \\\\mathcal {X}_k,1\\\\right\\\\rangle \\\\)</span> </span> in terms of generic ones. As another consequence, we prove that <span> <span>\\\\( \\\\left\\\\langle \\\\mathcal {X}_1\\\\otimes \\\\cdots \\\\otimes \\\\mathcal {X}_k,1\\\\right\\\\rangle \\\\)</span> </span> is a polynomial in <em>q</em> with non-negative integer coefficients and we give a criterion for its non-vanishing in terms of the root system of <em>Q</em>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09854-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09854-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract Given a generic k-tuple \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\) of split semisimple irreducible characters of \(\textrm{GL}_n(\mathbb {F}_q)\)Hausel, Letellier 和 Rodriguez-Villegas (Adv. Math. 234:85-128, 2013, Theorem 1.4.1) 构建了一个星形四元组 \(Q=(I,\Omega )\) 以及一个维向量 \(\alpha \in \mathbb {N}^I\) ,他们证明了 0.0.1 $$(begin{aligned})。\其中 \(a_{Q,\alpha }(t)\in \mathbb {Z}[t]\) 是所谓的 Kac 多项式,即、它是有限域上维度为向量 \(\alpha \)的 Q 的绝对不可分解表示的同构类数的计数多项式。此外,Kac(1983)猜想并由 Hausel-Letellier-Villegas 证明(Ann. of Math. (2) 177(3):1147-1168, 2013),\(a_{Q,\alpha }(t)\) 具有非负整数系数。根据上述公式和 Kac(1983)的结果,他们推导出:当且仅当 \(\alpha \) 是 Q 的根时,\(left\langle \mathcal {X}_1otimes \cdots \otimes \mathcal {X}_k,1\right\rangle \ne 0\) 是 Q 的根;此外,当(alpha)是实数根时,(left/langle /mathcal {X}_1/otimes /cdots /otimes /mathcal {X}_k,1/right/rangle =1)正好是实数根。在本文中,我们将他们的结果扩展到任何k-tuple \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\) 的分裂半简单不可还原字符(不一定是泛型的)。为此,我们在\(\textrm{GL}_n(\mathbb {F}_q)\)的可分割半简单不可还原字符的k元组集合上引入一个由子集\(V\subset \mathbb {N}^I\)索引的分层。对应于 \(V=\{alpha\}\) 的部分由通用 k 元组子集 \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\) 组成。在对应于 \(V\subset \mathbb {N}^I\) 的层中的 k 元组 \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\) 称为 V 层的。如果((Q,\alpha )\)的不可分解分量的维向量属于 V,那么(\rho \otimes _\mathbb {F}_q}\overline\mathbb {F}_q}\)的表示(\rho \)被认为最多是 V 层的。给定 V 层的 k 元组 \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\), 我们的主要定理是公式(0.0.1)的以下概括 $$\begin{aligned}\left\langle (mathcal {X}_1\otimes ) (cdots (otimes ) (mathcal {X}_k,1\right\rangle =M_{Q,\alpha ,V}(q) (end{aligned}}$$ 其中 (M_{Q,\alpha 、V}(t)/in \mathbb {Z}[t]\) 是最多 V 层的\(mathbb {F}_q\) 上的\((Q,\alpha )\)表示的同构类数的计数多项式。此外,我们证明了一个用 Kac 多项式表达 \(M_{Q,\alpha ,V}(t)\)的公式,因此我们得到了一个用通项表达任意倍数 \(\left\langle \mathcal {X}_1\otimes \cdots \otimes \mathcal {X}_k,1\right\rangle \)的公式。作为另一个结果,我们证明了 \( \left\langle \mathcal {X}_1\otimes \cdots \otimes \mathcal {X}_k,1\right\rangle \)是一个在 q 中具有非负整数系数的多项式,并且我们给出了它在 Q 的根系统中不相等的判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Generalization of Kac Polynomials and Tensor Product of Representations of $${{\,\textrm{GL}\,}}_n(\mathbb {F}_q)$$

Abstract

Given a generic k-tuple \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\) of split semisimple irreducible characters of \(\textrm{GL}_n(\mathbb {F}_q)\) , Hausel, Letellier and Rodriguez-Villegas (Adv. Math. 234:85–128, 2013, Theorem 1.4.1) constructed a star-shaped quiver \(Q=(I,\Omega )\) together with a dimension vector \(\alpha \in \mathbb {N}^I\) and they proved that 0.0.1 $$\begin{aligned} \left\langle \mathcal {X}_1\otimes \cdots \otimes \mathcal {X}_k,1\right\rangle =a_{Q,\alpha }(q) \end{aligned}$$ where \(a_{Q,\alpha }(t)\in \mathbb {Z}[t]\) is the so-called Kac polynomial, i.e., it is the counting polynomial for the number of isomorphism classes of absolutely indecomposable representations of Q of dimension vector \(\alpha \) over finite fields. Moreover, it was conjectured by Kac (1983) and proved by Hausel-Letellier-Villegas (Ann. of Math. (2) 177(3):1147–1168, 2013) that \(a_{Q,\alpha }(t)\) has non-negative integer coefficients. From the above formula together with Kac’s (1983) results, they deduced that \(\left\langle \mathcal {X}_1\otimes \cdots \otimes \mathcal {X}_k,1\right\rangle \ne 0\) if and only if \(\alpha \) is a root of Q; moreover, \(\left\langle \mathcal {X}_1\otimes \cdots \otimes \mathcal {X}_k,1\right\rangle =1\) exactly when \(\alpha \) is a real root. In this paper, we extend their result to any k-tuple \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\) of split semisimple irreducible characters (which are not necessarily generic). To do that, we introduce a stratification indexed by subsets \(V\subset \mathbb {N}^I\) on the set of k-tuples of split semisimple irreducible characters of \(\textrm{GL}_n(\mathbb {F}_q)\) . The part corresponding to \(V=\{\alpha \}\) consists of the subset of generic k-tuples \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\) . A k-tuple \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\) in the stratum corresponding to \(V\subset \mathbb {N}^I\) is said to be of level V. A representation \(\rho \) of \((Q,\alpha )\) is said to be of level at most \(V\subset \mathbb {N}^I\) if the dimension vectors of the indecomposable components of \(\rho \otimes _{\mathbb {F}_q}\overline{\mathbb {F}}_q\) belong to V. Given a k-tuple \((\mathcal {X}_1,\dots ,\mathcal {X}_k)\) of level V, our main theorem is the following generalization of Formula (0.0.1) $$\begin{aligned} \left\langle \mathcal {X}_1\otimes \cdots \otimes \mathcal {X}_k,1\right\rangle =M_{Q,\alpha ,V}(q) \end{aligned}$$ where \(M_{Q,\alpha ,V}(t)\in \mathbb {Z}[t]\) is the counting polynomial for the number of isomorphism classes of representations of \((Q,\alpha )\) over \(\mathbb {F}_q\) of level at most V. Moreover, we prove a formula expressing \(M_{Q,\alpha ,V}(t)\) in terms of Kac polynomials and so we get a formula expressing any multiplicity \(\left\langle \mathcal {X}_1\otimes \cdots \otimes \mathcal {X}_k,1\right\rangle \) in terms of generic ones. As another consequence, we prove that \( \left\langle \mathcal {X}_1\otimes \cdots \otimes \mathcal {X}_k,1\right\rangle \) is a polynomial in q with non-negative integer coefficients and we give a criterion for its non-vanishing in terms of the root system of Q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信