光学离心二氧化碳(R186-R282)的瞬态红外光谱和 J=244-282 态的碰撞动力学

IF 3.4 3区 化学 Q2 Chemistry
Michael E. Ritter, Simone A. DeSouza, Hannah M. Ogden, Tara J. Michael and Amy S. Mullin
{"title":"光学离心二氧化碳(R186-R282)的瞬态红外光谱和 J=244-282 态的碰撞动力学","authors":"Michael E. Ritter, Simone A. DeSouza, Hannah M. Ogden, Tara J. Michael and Amy S. Mullin","doi":"10.1039/D3FD00179B","DOIUrl":null,"url":null,"abstract":"<p >Collisions of optically centrifuged CO<small><sub>2</sub></small> molecules with <em>J</em> = 244–282 (<em>E</em><small><sub>rot</sub></small> = 22 800–30 300 cm<small><sup>−1</sup></small>) are investigated with high-resolution transient IR absorption spectroscopy to reveal collisional and orientational phenomena of molecules with hyper-thermal rotational energies. The optical centrifuge is a non-resonant optical excitation technique that uses ultrafast, 800 nm chirped pulses to drive molecules to extreme rotational states through sequential Raman transitions. The extent of rotational excitation is controlled by tuning the optical bandwidth of the excitation pulses. Frequencies of 30 R-branch <em>ν</em><small><sub>3</sub></small> fundamental IR probe transitions are measured for the <em>J</em> = 186–282 states of CO<small><sub>2</sub></small>, expanding beyond previously reported IR transitions up to <em>J</em> = 128. The optically centrifuged molecules have oriented angular momentum and unidirectional rotation. Polarization-sensitive transient IR absorption of individual rotational states of optically centrifuged molecules and their collision products reveals information about collisional energy transfer, relaxation kinetics, and dynamics of rotation-to-translation energy transfer. The transient IR probe also measures the extent of polarization anisotropy. Rotational energy transfer for lower energy molecules is discussed in terms of statistical models and a comparison highlights the role of increasing energy gap with <em>J</em> and angular momentum of the optically centrifuged molecules.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"251 ","pages":" 140-159"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d3fd00179b?page=search","citationCount":"0","resultStr":"{\"title\":\"Transient IR spectroscopy of optically centrifuged CO2 (R186–R282) and collision dynamics for the J = 244–282 states\",\"authors\":\"Michael E. Ritter, Simone A. DeSouza, Hannah M. Ogden, Tara J. Michael and Amy S. Mullin\",\"doi\":\"10.1039/D3FD00179B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Collisions of optically centrifuged CO<small><sub>2</sub></small> molecules with <em>J</em> = 244–282 (<em>E</em><small><sub>rot</sub></small> = 22 800–30 300 cm<small><sup>−1</sup></small>) are investigated with high-resolution transient IR absorption spectroscopy to reveal collisional and orientational phenomena of molecules with hyper-thermal rotational energies. The optical centrifuge is a non-resonant optical excitation technique that uses ultrafast, 800 nm chirped pulses to drive molecules to extreme rotational states through sequential Raman transitions. The extent of rotational excitation is controlled by tuning the optical bandwidth of the excitation pulses. Frequencies of 30 R-branch <em>ν</em><small><sub>3</sub></small> fundamental IR probe transitions are measured for the <em>J</em> = 186–282 states of CO<small><sub>2</sub></small>, expanding beyond previously reported IR transitions up to <em>J</em> = 128. The optically centrifuged molecules have oriented angular momentum and unidirectional rotation. Polarization-sensitive transient IR absorption of individual rotational states of optically centrifuged molecules and their collision products reveals information about collisional energy transfer, relaxation kinetics, and dynamics of rotation-to-translation energy transfer. The transient IR probe also measures the extent of polarization anisotropy. Rotational energy transfer for lower energy molecules is discussed in terms of statistical models and a comparison highlights the role of increasing energy gap with <em>J</em> and angular momentum of the optically centrifuged molecules.</p>\",\"PeriodicalId\":49075,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"251 \",\"pages\":\" 140-159\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d3fd00179b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/fd/d3fd00179b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/fd/d3fd00179b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

利用高分辨率瞬态红外吸收光谱研究了J=244-282(Erot=22,800-30,300 cm-1)的光学离心二氧化碳分子的碰撞,以揭示具有超热旋转能量的分子的碰撞和取向现象。光学离心机是一种非共振光学激发技术,它使用 800 nm 的超快啁啾脉冲,通过连续的拉曼转换将分子驱动到极端旋转状态。旋转激发的程度可通过调整激发脉冲的光学带宽来控制。为二氧化碳的 J=186-282 态测量到了 30 个 R 支 ν_3 基本红外探针跃迁的频率,超出了以前报告的红外跃迁,达到 J=128。光学离心分子具有定向角动量和单向旋转。对光学离心分子的单个旋转态及其碰撞产物的偏振敏感瞬态红外吸收揭示了碰撞能量转移、弛豫动力学以及旋转到平移能量转移的动力学信息。瞬态红外探测器还能测量取向程度和取向各向异性的衰减率。根据统计模型讨论了低能量分子的旋转能量转移,并通过比较强调了能隙随 J 和光学离心分子角动量增大而增大的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transient IR spectroscopy of optically centrifuged CO2 (R186–R282) and collision dynamics for the J = 244–282 states

Transient IR spectroscopy of optically centrifuged CO2 (R186–R282) and collision dynamics for the J = 244–282 states

Collisions of optically centrifuged CO2 molecules with J = 244–282 (Erot = 22 800–30 300 cm−1) are investigated with high-resolution transient IR absorption spectroscopy to reveal collisional and orientational phenomena of molecules with hyper-thermal rotational energies. The optical centrifuge is a non-resonant optical excitation technique that uses ultrafast, 800 nm chirped pulses to drive molecules to extreme rotational states through sequential Raman transitions. The extent of rotational excitation is controlled by tuning the optical bandwidth of the excitation pulses. Frequencies of 30 R-branch ν3 fundamental IR probe transitions are measured for the J = 186–282 states of CO2, expanding beyond previously reported IR transitions up to J = 128. The optically centrifuged molecules have oriented angular momentum and unidirectional rotation. Polarization-sensitive transient IR absorption of individual rotational states of optically centrifuged molecules and their collision products reveals information about collisional energy transfer, relaxation kinetics, and dynamics of rotation-to-translation energy transfer. The transient IR probe also measures the extent of polarization anisotropy. Rotational energy transfer for lower energy molecules is discussed in terms of statistical models and a comparison highlights the role of increasing energy gap with J and angular momentum of the optically centrifuged molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions CHEMISTRY, PHYSICAL-
CiteScore
4.90
自引率
0.00%
发文量
259
审稿时长
2.8 months
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信