类似除法性质的研究

Pub Date : 2024-04-01 DOI:10.1142/s0219498825502214
Robin Khanfir, Béranger Seguin
{"title":"类似除法性质的研究","authors":"Robin Khanfir, Béranger Seguin","doi":"10.1142/s0219498825502214","DOIUrl":null,"url":null,"abstract":"<p>We study a weak divisibility property for noncommutative rings: A nontrivial ring is <i>fadelian</i> if for all nonzero <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi></math></span><span></span> and <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi></math></span><span></span> there exist <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>,</mo><mi>c</mi></math></span><span></span> such that <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mi>a</mi><mi>b</mi><mo stretchy=\"false\">+</mo><mi>c</mi><mi>a</mi></math></span><span></span>. We prove properties of fadelian rings and construct examples thereof which are not division rings, as well as non-Noetherian and non-Ore examples.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of a division-like property\",\"authors\":\"Robin Khanfir, Béranger Seguin\",\"doi\":\"10.1142/s0219498825502214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a weak divisibility property for noncommutative rings: A nontrivial ring is <i>fadelian</i> if for all nonzero <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>a</mi></math></span><span></span> and <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi></math></span><span></span> there exist <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi><mo>,</mo><mi>c</mi></math></span><span></span> such that <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mi>a</mi><mi>b</mi><mo stretchy=\\\"false\\\">+</mo><mi>c</mi><mi>a</mi></math></span><span></span>. We prove properties of fadelian rings and construct examples thereof which are not division rings, as well as non-Noetherian and non-Ore examples.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825502214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究非交换环的弱可分性:如果对于所有非零的 a 和 x,存在 b、c,使得 x=ab+ca ,那么一个非琐环就是法德环。我们证明了非可分割环的性质,并构造了非可分割环的例子,以及非诺特环和非奥尔环的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Study of a division-like property

We study a weak divisibility property for noncommutative rings: A nontrivial ring is fadelian if for all nonzero a and x there exist b,c such that x=ab+ca. We prove properties of fadelian rings and construct examples thereof which are not division rings, as well as non-Noetherian and non-Ore examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信