{"title":"非完美零能李代数上的自不变度量","authors":"D. Conti, V. del Barco, F. A. Rossi","doi":"10.1142/s0219498825502329","DOIUrl":null,"url":null,"abstract":"<p>We proved in previous work that all real nilpotent Lie algebras of dimension up to <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>0</mn></math></span><span></span> carrying an ad-invariant metric are nice, i.e. they admit a nice basis in the sense of Lauret <i>et al.</i> In this paper, we show by constructing explicit examples that nonnice irreducible nilpotent Lie algebras admitting an ad-invariant metric exist for every dimension greater than <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>0</mn></math></span><span></span> and every nilpotency step greater than <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span>. In the way of doing so, we introduce a method to construct Lie algebras with ad-invariant metrics called the single extension, as a parallel to the well-known double extension procedure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ad-invariant metrics on nonnice nilpotent Lie algebras\",\"authors\":\"D. Conti, V. del Barco, F. A. Rossi\",\"doi\":\"10.1142/s0219498825502329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We proved in previous work that all real nilpotent Lie algebras of dimension up to <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn><mn>0</mn></math></span><span></span> carrying an ad-invariant metric are nice, i.e. they admit a nice basis in the sense of Lauret <i>et al.</i> In this paper, we show by constructing explicit examples that nonnice irreducible nilpotent Lie algebras admitting an ad-invariant metric exist for every dimension greater than <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn><mn>0</mn></math></span><span></span> and every nilpotency step greater than <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn></math></span><span></span>. In the way of doing so, we introduce a method to construct Lie algebras with ad-invariant metrics called the single extension, as a parallel to the well-known double extension procedure.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825502329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ad-invariant metrics on nonnice nilpotent Lie algebras
We proved in previous work that all real nilpotent Lie algebras of dimension up to carrying an ad-invariant metric are nice, i.e. they admit a nice basis in the sense of Lauret et al. In this paper, we show by constructing explicit examples that nonnice irreducible nilpotent Lie algebras admitting an ad-invariant metric exist for every dimension greater than and every nilpotency step greater than . In the way of doing so, we introduce a method to construct Lie algebras with ad-invariant metrics called the single extension, as a parallel to the well-known double extension procedure.