具有积分约束条件的抛物方程的反源问题的良好拟合和 Tikhonov 正则化

IF 0.9 4区 数学 Q2 MATHEMATICS
Sedar Ngoma
{"title":"具有积分约束条件的抛物方程的反源问题的良好拟合和 Tikhonov 正则化","authors":"Sedar Ngoma","doi":"10.1515/jiip-2023-0050","DOIUrl":null,"url":null,"abstract":"We investigate a time-dependent inverse source problem for a parabolic partial differential equation with an integral constraint and subject to Neumann boundary conditions in a domain of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"double-struck\">R</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0050_ineq_0001.png\" /> <jats:tex-math>\\mathbb{R}^{d}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>d</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0050_ineq_0002.png\" /> <jats:tex-math>d\\geq 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove the well-posedness as well as higher regularity of solutions in Hölder spaces. We then develop and implement an algorithm that we use to approximate solutions of the inverse problem by means of a finite element discretization in space. Due to instability in inverse problems, we apply Tikhonov regularization combined with the discrepancy principle for selecting the regularization parameter in order to obtain a stable reconstruction. Our numerical results show that the proposed scheme is an accurate technique for approximating solutions of this inverse problem.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"5 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness and Tikhonov regularization of an inverse source problem for a parabolic equation with an integral constraint\",\"authors\":\"Sedar Ngoma\",\"doi\":\"10.1515/jiip-2023-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a time-dependent inverse source problem for a parabolic partial differential equation with an integral constraint and subject to Neumann boundary conditions in a domain of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0050_ineq_0001.png\\\" /> <jats:tex-math>\\\\mathbb{R}^{d}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>d</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0050_ineq_0002.png\\\" /> <jats:tex-math>d\\\\geq 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove the well-posedness as well as higher regularity of solutions in Hölder spaces. We then develop and implement an algorithm that we use to approximate solutions of the inverse problem by means of a finite element discretization in space. Due to instability in inverse problems, we apply Tikhonov regularization combined with the discrepancy principle for selecting the regularization parameter in order to obtain a stable reconstruction. Our numerical results show that the proposed scheme is an accurate technique for approximating solutions of this inverse problem.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2023-0050\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在 R d \mathbb{R}^{d}, d ≥ 1 d\geq 1 的域中,具有积分约束条件并受诺伊曼边界条件限制的抛物线偏微分方程的时变反源问题。我们证明了在赫尔德空间中解的可求性及高正则性。然后,我们开发并实现了一种算法,通过有限元空间离散化来近似求解逆问题。由于逆问题的不稳定性,我们采用提霍诺夫正则化结合差异原则来选择正则化参数,以获得稳定的重构。我们的数值结果表明,所提出的方案是近似求解该逆问题的精确技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness and Tikhonov regularization of an inverse source problem for a parabolic equation with an integral constraint
We investigate a time-dependent inverse source problem for a parabolic partial differential equation with an integral constraint and subject to Neumann boundary conditions in a domain of R d \mathbb{R}^{d} , d 1 d\geq 1 . We prove the well-posedness as well as higher regularity of solutions in Hölder spaces. We then develop and implement an algorithm that we use to approximate solutions of the inverse problem by means of a finite element discretization in space. Due to instability in inverse problems, we apply Tikhonov regularization combined with the discrepancy principle for selecting the regularization parameter in order to obtain a stable reconstruction. Our numerical results show that the proposed scheme is an accurate technique for approximating solutions of this inverse problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信